Basic Hydraulics

Hydraulics is the science of forces and movements transmitted by means of liquids.

FLUID TECHNOLOGY

Fluid transport systems

Fluid power systems

In The Beginning...

In the 17th century Pascal developed the law of confined fluids.

Pascal's Law

"Pressure applied on a confined fluid is transmitted undiminished in all directions, and acts with equal force on equal areas, and at right angles to them".

17 June 2015

HYDROSTATICS

PASCAL'S Law

HYDRODYNAMICS

Hydraulic System Applications

Fig: Hydraulic press

Fig: Hydraulic disc brakes

Fig: Hydraulic lift table

Fig: Excavator

Hydraulic System

Hydraulic System Components

- 1. Power pack
- a) Tank / reservoir
- b) Oil
- c) Filters
- d) Strainers
- 2. Control valves
- a) Direction
- b) Pressure
- c) Flow
- 3. Actuators
- a) Cylinders
- b) Motors

- e) Prime movers
- f) Pumps
- g) Oil level and Temperature indicators
- h) Heat exchangers
- 4. Accessories
- a) Accumulators
- b) Pressure gauges
- c) Temperature gauges

• POWER PACK

Technical data

Capacities - litres Type of pump (Fixed / Variable displacement) Displacement V g max cm³ Operating pressure p max bar El. motor power P kW

Elements

- 🛛 Tank
- 🛛 Oil
- □ Filters & Strainers
- Breathers
- 🖵 Pump
- Electrical Motor
- Heat Exchangers
- Oil level indicators
- □ Pressure and Temperature gauges

Tank / reservoir

Symbol

Hydraulic Oil

- ➢ Temperature range: -54° C to 135° C
- > NAS class, ISO class
- Viscosity, Viscosity Index
- Compressibility
- > Foaming

Hydraulic Filters

Symbol

Beta ratio (β) = Upstream particle count / Downstream particle count.

Breathers and Strainers

- 1. Air Filtration
- 2. Dehumidification

Types of Filters

Suction Filter

- Located in the suction line of the pump
- Only filtered oil entered the system
- Grade of filtration is 60 µm 100 µm

- That is why suction filters are equipped with by-pas valves
- Can also be used ahead of the pump as a coarse filter

Types of Filters

Pressure Filter

- Installed in the pressure line of the hydraulic system ahead of the device which are sensitive to dirt e.g. at the pressure port of the pump ahead of valves or flow control valves
- Since this filter is subjected to maximum pressure, it must be of robust design
- Should not have a by-pass but have a contamination indicator
- Operating pressure up to 420 bar
- Grade of filtration 3 µm– 5 µm
- Requires a pressure tight housing and contamination indicator
- The effectiveness of the filter is checked be the contamination indicator

Types of Filters

Return Filter

- Installed in the return line
- Cheaper than the high pressure filter
- Operating pressure up to max. 30 bar
- Grade of filtration 10 μ m 25 μ m

Main stream Filtering

Suction filter : Pr. Difference = 0.05 to 0.1 bar at operating temperature Pressure filter : Pr. Difference = 1 to 1.5 bar at operating temperature Return filter: Pr. Difference = 0.5 bar at operating temperature

• HYDRAULIC PUMPS

Principle – What is Pump ?

Pump is a Source of Power

Primary Function is to develop

flow not pressure

Hydraulic Pumps

- (i) Non-positive displacement or Hydrodynamic pumps
- Low pressure high flow applications

(ii) Positive displacement or Hydrostatic pumps

٠

High pressure low flow applications

Centrifugal Pump

Non- Positive Displacement Pump

Classification of Positive Displacement Pumps

POSITIVE DISPLACEMENT PUMPS

GEAR

1. External Gear

2. Internal Gear

3. Gerotor

4. Lobe

5. Screw

VANE

1. Unbalanced a) Fixed Displacement

b) Variable

Displacement

2. Balanced (Fixed)

Volumetric efficiency

1.Gear pumps – 80% to 90% 2.Vane pumps - 82% to 92% 3.Piston pumps - 90% to 98%

PISTON

- 1.Axial Design
 - a) Bent axis type (F/V)
 - b) Swash plate type (F/V)
- 2. Radial Design

Gear Pumps

Fig: External gear pumps

Important Parameters

- 1. Displacement Volume 0.2 to 200 cc
- 2. Maximum pressure up to 300 bar
- 3. Speed range 500 to 6000 rpm

Internal gear pumps

Internal Gear Pump

Vane Pumps

Unbalanced vane pumps

Fixed displacement pumps

17 June 2015 Single pump

Double pump

27

Variable Displacement Pump

Axial Piston Pump – Bent Axis Design

1. Fixed displacement UNIVERSAL LINK PISTON ROD CYLINDER BLOCK ROTATING SHAFT CAUSES PISTON PISTONS TO RECIPROCATE OIL FORCED TO OUTLET AS PISTON IS PUSHED BACK INTO CYLINDER TO OUTLET PISTON IS WITHDRAWING **Important Parameters** FROM BORE AT INLET Displacement Volume – 18 to 1000 cc 1. 2. Maximum pressure – up to 400 bar FROM INLET Speed range - 600 to 6000 rpm 3.

Axial Piston Pump – Swash Plate Design

Radial Piston Pump

Important Parameters

- 1. Displacement Volume 500 cc
- 2. Maximum pressure up to 700 bar
- 3. Speed range 1000 to 3400 rpm

Control Valves

- 1. Non-return Valve (NCV)
- 2. Flow control valve (FCV)
- 3. Pressure control valves (PCV)
- 4. Direction control valves (DCV)

Actuators

1. Single acting

2. Double acting

Accumulator

It is the Energy storage device which is used when

- □ The pump cannot meet the extremes of fluid demand in the circuit
- Supply circuit needs to respond more quickly to any temporary demand

Bladder type

GAS VALVE

BLADDER

POPPET TO PREVENT EXTRUSION OF BLADDER

Heat Exchanger

Oil Temperature Indicators

Oil Level Indicators

17 June 2015

Simple open-loop open-center circuit

Fluid power symbols

Pressure Indication

Temperature Indication

Envelopes or Positions

One

Flow Meter

Three

Ports

Three Positions, Four Ports (4/3)

Normally Closed

Normally Open

4/3 DCV

Infinite position Normally Open Normally Closed Pressure Relief Valve Pressure Reducing Valve Flow Control Valve with bypass check valve

4/3 DCV, Right actuated

Hydraulic Fluids

The hydraulic fluids used must fulfill the following properties:

- Pressure transfer
- Lubrication of moving parts
- Cooling
- Corrosion protection
- Scuff removal
- Signal transmission

Types of Hydraulic Oils

- Hydraulic Oils are divided according to their characteristic and composition into three classes:
 - 1. Hydraulic oil HL
 - 2. Hydraulic oil HLP
 - 3. Hydraulic oil HV

Within these two groups – hydraulic oils and hydraulic fluids with low inflammability – there are various types of fluid with different characteristics. These characteristics are determined by a basic fluid and small quantities of additives.

Hydraulic oils

In DIN 51524 and 51525 hydraulic oils are divided according to their characteristics and composition into three classes:

- Hydraulic oil HL
- Hydraulic oil HLP
- Hydraulic oil HV.

The designations for these oils are composed of the letter H for hydraulic oil and an additional letter for the additives. The code letter is supplemented by a **viscosity code** defined in DIN 51517 (ISO viscosity classes).

Desig- nation	Special characteristics	Areas of application
HL	Increased corrosion protection and ageing stability	Systems in which high thermal demands are made or corrosion through immersion in water is possible.
HLP	Increased wearing protection	Like HL oil, also for use in systems where variable high friction occurs owing to design or operating factors.
HV	Improved viscosity-temperature characteristics	Like HLP oil, for use in widely fluctuating and low ambient temperatures.

	H: hydraulic oil
	L: with additives to increase corrosion protection and/ or ageing stability
HLP 68	P: with additives to reduce and/or increase load carrying ability
	68: Viscosity code as defined in DIN 51517

Characteristics of Hydraulic Oil:

The Hydraulic oil exhibits certain qualities under the relevant operating conditions:

- Low possible density
- Minimal compressibility
- Viscosity not too low high viscosity results in increased friction leading to excessive pressure losses and

heating at the throttling points and too low viscosity creates leakages

- Good viscosity temperature characteristics
- Low flammability

Hydraulic Symbols

Hydrauli Pump

Hydraulic motors with fixed displacement

with single direction of rotation

with two directions of rotation

▲ Fluids△ Gases

Ports & Positions

Method of Actuations

by lever with detent setting

by pedal and spring return

Hydraulic Symbols

hydraulic pressure source

electric motor

non-electric drive unit

pressure, power, return line

control (pilot) line

flexible line

line connection

lines crossing

exhaust, continuous

quick-acting coupling connected with mechanically opening non-return valves

reservoir

cooler

filter

heater

Hydraulic power Pack

Measuring devices

thermometer

flow meter

filling level indicator

State of the second system

Signal flow in Hydraulic System

Hydraulic System

Hydraulic System

Technical data

Directional Control Valve

Flow Control valve

Pressure relief valve

Non return Valve

Double Acting Cylinder

Hydraulic Motor(gear motor)

Hydraulic Power Unit

THANK YOU