
 

  

 

                               Bernoulli’s Principle 

Introduction 

A very important equation in fluid dynamics is the Bernoulli 

equation. This equation has four variables: velocity ( ), elevation 

( ), pressure (), and density (). It also has a constant (), which 

is the acceleration due to gravity. Here is Bernoulli’s equation: 

 

To understand and use this equation, we must know about 

streamlines.  

Streamlines are curves that are tangent to the velocity vector of 

the flow. In other words, they show the direction a fluid element 

will travel in at any point in time. A streamline is best illustrated 

by examples:  

 

If you throw a leaf in a stream of water, a streamline is the path 

of the leaf as it floats downstream. Of course the leaf can take 

any number of paths depending on where it lands in the stream 

after it was thrown. Streamlines exist underwater as well. 

Imagine a submerged particle that is neutrally buoyant (meaning 



 

  

it neither sinks nor floats). The particle, such as a waterlogged 

twig, also follows a streamline down the river. 

 

 

When values for velocity, pressure, etc. are plugged into 

Bernoulli’s equation, the result of the equation will be the same 

(constant) at every point along the streamline. 

Take, for example, a water reservoir at the top of a hill.  Imagine 

a streamline from the reservoir to a residence, where the water is 

used. At the reservoir, the velocity of the water is very small as 

it slowly moves toward the spillway.  For a water particle near 

the surface of the reservoir, the pressure is also very small. The 

elevation above the residence, however, is quite large. Let’s plug 

some of these values into Bernoulli’s equation: 

 

velocity,  = 0.01  

elevation,  = 1000 m 

pressure,  = 1 Pa 

density of water,  = 1000 .  

acceleration due to gravity,  = 9.8  



 

  

Questions:  

1. What is the value of Bernoulli’s equation with these values? 

2. What are the units of this value? 

3. Which of the following has the biggest effect on the value of 

Bernoulli’s equation for this case: velocity, elevation, or 

pressure?  

 

Now let’s follow a particle of water as it leaves the reservoir. As 

it travels over the spillway and down toward the residence, the 

elevation decreases, the velocity increases, and if the water 

travels in an enclosed piping system, the pressure increases. 

Let’s use Bernoulli’s equation to find the pressure of the water 

half-way down toward the residence. We’ll assume that we are 

traveling along the same streamline and that there are no energy 

losses along the way (more on this later). 

Questions:  

4. What is the value of Bernoulli’s equation at an elevation of 

500 m? 

5. If we measure the speed of the water to be 10  at 500 m of 

elevation, what is the pressure? 



 

  

At the end of our journey, the water particle has reached the 

residence where it is sitting stationary in a faucet, ready to be 

used by the resident. 

 

Head Loss 

In reality, the actual water pressure at the faucet would be much, 

much less than 9.8 MPa. The reason for this is due to head loss, 

which is energy in a moving fluid that is lost due to friction and 

turbulence in the water as it travels from the reservoir to the 

residence. Head loss is associated with the length, diameter, and 

smoothness of the pipe, bends, fittings, and valves. 

 

Turbulence is one fluidic phenomenon that causes head loss.  

Turbulence is a fluidic region where the particles that make up 

the fluid are chaotic or random in motion. Turbulence is seen in 

Figure 1in the region behind the wing. In the turbulent zone, the 

streamlines are continually and quickly changing shape and 

direction so that they are unrecognizable. Turbulent zones take 

energy from the fluid and contribute to head loss. Engineers try 

to minimize turbulence in piping systems in order to reduce the 



 

  

amount of energy required to move fluid through the piping 

system. Despite these efforts, all fittings in piping systems such 

as valves, tees, and unions cause turbulence.  Head loss from 

this turbulence can be estimated for a fitting if the velocity () of 

the water is known. Head loss is also dependent on the type of 

fitting.  The following equation and table can be used to estimate 

head loss from fittings ( ). Note that the acceleration of 

gravity constant () in the following equation. 

Head loss,  

In our previous example, we considered a reservoir at the top of 

a hill and a piping system that carries the water to residences 

below. Consider a single leg of the pipeline that carries water 

from the reservoir to a residence, as illustrated in Figure . 



 

  

 

Figure 1. Pipeline from a reservoir to a single residence.  

 

Questions: 

6. What fittings would you choose for this pipeline from the 

above table to minimize head loss?  

7. Assume that the water flowing through the pipe is traveling at 

10 . What is the total head loss from the fittings you chose? 

 

R
eservoir 

Residence 

Valve 

Valve 

Pipeline 

Elbows 



 

  

Fittings are not the only components in piping systems that 

cause losses. Friction between the water molecules and the 

surface of the pipe also contribute to head loss. Factors that 

influence head loss due to friction are: 

• Length of the pipe () 

• Effective diameter of the pipe () 

• Velocity of the water in the pipe () 

• Acceleration of gravity () 

• Friction from the surface roughness of the pipe () 

The head loss due to the pipe is estimated by the following 

equation: 

 

Combining Bernoulli’s Equation With Head Loss 

We can now combine the concepts of Bernoulli’s equation and 

head loss to understand the “Fluidic Energy Equation”. We 

divide each term in Bernoulli’s equation by the “specific 

weight” of the fluid (). The specific weight of a fluid is simply 

the density of the fluid multiplied by the acceleration of gravity: 

.Thus, the effects of head loss result in: 



 

  

 

Recall our discussion of streamlines from the first section. The 

left side of this equation represents the state of a fluid particle at 

the start of our streamline, for example sitting in the water 

reservoir at the top of a hill. The right side of this equation is the 

state of our fluid particle at the end of our streamline, for 

example at the water tap of the residence at the bottom of a hill. 

The energy of the fluid particle in the reservoir is equal to the 

energy of the fluid particle at the tap plus the head losses. In 

other words, because of head losses, some of the energy is 

sapped from the fluid particle during its journey from the 

reservoir to the tap. 

Again, consider our pipeline from the reservoir to the residential 

tap.  Suppose you measure the pressure and velocity at two 

points in the piping system (along the same streamline) and 

discover that they are the same for both points.  In other words, 

 and . 

DERIVATION OF BERNOULLI'S EQUATION 

Bernoulli's equation relates the speed of a fluid at a point, the 

pressure at that point and the height of that point above a 



 

  

reference level. It is just the application of work-energy theorem 

in the case of fluid flow. We shall consider the case of 

irrotational and steady flow of an incompressible and 

nonviscous liquid. 

Figure below shows such a flow of a liquid in a tube of varying 

cross-section and varying height. Consider the liquid contained 

between the cross-sections A and B of the tube. The heights of A 

and B are h1 and h2 respectively from a reference level.  

 

This liquid advances into the tube and after a time ∆t is 

contained between the cross-sections A' and B' as shown in 

Figure below 

 

 

 

 

 

 

Suppose the area of cross-section at A = A1 

the area of cross-section at B = A2 

the speed of the liquid at A = v1 



 

  

the speed of the liquid at B = v2 

the pressure at A = the pressure at B = P2  

and the density of the liquid = ῥ. 

The distance  

AA' = v1∆t              

and the distance 

BB' = v2∆t.  

The volume between A and A' is  

A 1 v1∆t   and 

the volume between B and B' is  

A2v2∆t.  

By the equation of continuity, 

A1v1∆t = A2v2∆t 

The mass of this volume of liquid is 

∆m = pA1v1∆t = pA2v2∆t. 

Let us calculate the total work done on the part of the liquid just 

considered. The forces acting on this part of the liquid are 

 

(a) P 1A1, by the liquid on the left 

(b) P2 A2, by the liquid on the right 

(c) (∆m)g, the weight of the liquid considered and 



 

  

(d) cell, contact forces by the walls of the tube. 

In time ∆t, the point of application of P 1 Al is displaced by  

AA' = v1∆t.  

Thus, the work done by P1A1 in time ∆t is 

 

W1 = (P1 A1) (v1∆t) = P1 [∆m/ῥ] 

 

Similarly, the work done by P2 A2 in time ∆t is 

W2= - (P2A2)(v2At) = -P2 [∆m/ῥ] 

 

The work done by the weight is equal to the negative of the 

change in gravitational potential energy. 

The change in potential energy (P.E.) in time ∆t is 

P. E. of A' BB' - P. E. of A A'B 

= P. E. of A'B + P. E. of BB' - P. E. of AA' - P. E. of A'B 

= P. E. of BB' - P. E. of AA' 

= (∆m)gh2 - (∆m)gh1. 

Thus, the work done by the weight in time ∆t is 

W3 = (∆m)gh1 - (∆m)gh2 . 

 



 

  

The contact force Ṅ( does no work on the liquid because it is 

perpendicular to the velocity. 

The total work done on the liquid considered, in the time 

interval At, is 

W=W1 + W2 + W3 …………….(1) 

                   W1 = (P1 A1) (v1∆t) = P1 [∆m/ῥ] 

                   W2= - (P2A2)(v2At) = -P2 [∆m/ῥ] 

                   W3 = (∆m)gh1 - (∆m)gh2 . 

Therefore, 

W=W1 + W2 + W3 

    = P1 [∆m/ῥ] -P2 [∆m/ῥ] + (∆m)gh1 - (∆m)gh2 . 

 

Workdone on the system is equal to the change in its kinetic 

energy. Thus, 

P1 [∆m/ῥ] -P2 [∆m/ῥ] + (∆m)gh1 - (∆m)gh2 

= 1/2[∆m]v22 

 - 1/2[∆m]v12 

  

P1/ ῥ + gh1 + (1/2)v12 

 = P2/ ῥ + gh2 + (1/2)v22 

  

Or 

 

P1 + ῥ gh1 + (1/2)ῥ v12 

 = P2 + ῥ gh2 + (1/2)ῥ v22 

  



 

  

Or 

P + ῥ gh + (1/2)ῥ v2 

 = constant 

This is known as Bernoulli's equation. 

 

 


