CENTRE OF GRAVITY

## Centroid and Centre of Gravity

## Centroid

## Center of Gravity

- It is defined as a point about - It is defined as a point about which the entire line, area or volume is assumed to be concentrated. which the entire weight of the body is assumed to be concentrated.
- It is related to distribution of - Center of mass. length, area and volume.
- It is related to distribution of mass.

Examples
Examples


## Centere of Gravity

- Consider system of n particles fixed within a region of space.
- The weights of the particles can be replaced by a single (equiralent) resultant weight having defined point G of application

(a)

(b)


## Axis of Reference

The cente of gravity of a body is alvays calculated widi reference to sonce asmed axis known as axis of fefernce (or somedmes with reference t some p pint of feference). The axis of
 leftineof thefignerfor caluading $\bar{x}$.


## Center of Gravity

- Resultant weight = total weight of n particles, $W_{R}=\int d W$
- Sum of moments of weights of all the particles about $x, y, z$ axes $=$ moment of resultant weight about these axes
- moments about the x axis, $\mathrm{x} W_{R}=\widetilde{x}_{1} W_{1}+\widetilde{x}_{2} W_{2}+\ldots+\tilde{x}_{n} W_{n}$
- moments about y axis, $\mathrm{y} W_{R}=\widetilde{y}_{1} W_{1}+\bar{y}_{2} W_{2}+\ldots+\tilde{y}_{n} W_{n}$
- Generally,

$$
\bar{x}=\frac{\int \widetilde{x} d W}{\int d W} ; \quad \bar{y}=\frac{\int \tilde{y} d W}{\int d W} ; \quad z=\frac{\int \tilde{z} d W}{\int d W}
$$

## Center of mass



$$
\begin{aligned}
\bar{x} & =\frac{\int \tilde{x} d m}{\int d m} \\
\bar{y} & =\frac{\int \tilde{y} d m}{\int d m} \\
\bar{z} & =\frac{\int \tilde{z} d m}{\int d m}
\end{aligned}
$$

## Center of Area / Area centroid

Center of Volume / Volume centroid


$$
\begin{aligned}
\bar{x} & =\frac{\int_{A} \tilde{x} d A}{\int_{A} d A} \\
\bar{y} & =\frac{\int_{A} \tilde{y} d A}{\int_{A} d A} \\
\bar{z} & =\frac{\int_{A} \tilde{z} d A}{\int_{A} d A}
\end{aligned}
$$

Axis of symmetry

Center of Line / Line centroid


Axisotsjmmetty




## CENTRE OF GRAVITY (CG)

-Centre of Gravity (CG) of a uniform rod is at middle point $=\frac{\mathrm{L}}{2}$
-Centre of Gravity (CG) of a rectangle/ parallelogram is at that point where its two diagonal meet.
-Centre of Gravity (CG) of a triangle is that point where three medians meet (median is the line which develops by joining its vertex and middle point of the opposite face).

- Centre of Gravity (CG) of a semicircle is at a distance of $\frac{4 r}{3 \pi}$ from its base measure along vertical axis.

Right circular cone
$V=\frac{\pi r^{2} h}{3}$
$x_{C}=0$
$y_{C}=\frac{3 h}{4}$
$z_{C}=0$

Circular cylinder

$$
\begin{aligned}
& V=\pi r^{2} L \\
& x_{C}=0 \\
& y_{C}=\frac{L}{2} \\
& z_{C}=0
\end{aligned}
$$

