Concepts of Welding & Hot Cutting

Objective

At the end trainees will be able to

- Explain meaning of 5 weld related terms
- Explain role of welding parameters
- Read any welding drawing
- Use proper welding aids
- Avoid unsafe practices

Introduction

- Widely used metal forming in Rlys.
- Unlike Casting, we can have
 - Dissimilar metals
 - Sharp changes in section thickness
 - Structure with very thin sheets
- Much less infrastructural requirement
- No major problem with design change
- Much more in -situ

Limitations

- Least technical knowledge in Rlys.
- Formation of Heat Affected Zone (HAZ)
 - Susceptible to Property alteration
 - Prone to failure
- Distortion and Warping, to control needs
 - Weld sequencing
 - Use of fixtures & clamping
- Residual stress
 - Needs destressing in complicated welding
- Hazard of Shock, Fire, Toxicity Etc.

Basic Concepts

Glossary of terms

- Parent/Base Metal → Metals being welded
- Filler Metal \rightarrow Metal to fill up gap at edge
- Weld Pool → A Liq. Pool of Filler metal & Parent metal in ≈7:3 ratio at edge
- HAZ → Area adjacent to welding interface where metal properties have changed due to application of heat
- Shielding → Protecting liq./hot metal from oxidation during welding

Concepts of Consumables

- Bare wire → A solid wire, coated/uncoated to provide filler metal at weld interface
- Fluxes → A mixture of different minerals, organics, metals etc. to provide shielding, alloying etc. - Fused or Agglomerated
- Shield gas \rightarrow Separate Gas for shielding
- Electrode \rightarrow Filler wire & flux integrated
- Flux Cored wire → Tubular filler wire filled with granular flux

Welding Defects

- Due to wrong selection of welding process
 & parameters, defects can occur, namely
- Cracks, both Immediate & Delayed
- Undercut
- Lack of penetration
- Lack of Fusion
- Slag inclusion
- Blow holes & porosity

Weldabilty

- No crack during welding or in service
- Factors affecting weldability
 - Base & weld metal composition
 - Base metal thickness
 - Welding Process & procedure
- CE = C + Mn/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15

WELDING EQUIPMENT & PARAMETERS

Welding Equipments

- Transformers (AC), Rectifiers(DC),
- Static Characteristics CC or CV
 - Transformer only CC type
 - Rectifier Both CC, CV or dual
- For Manual welding CC is preferred
- For Auto or Semi-auto CV can be used
- Rectifier control can be Diode, Thyristor or Transistor based

Modern Welding Equipments

- IGBT Type pulse-synchronised
 - Inverted Gate Bi-polar Transistor
 - Pulse type square wave form synchronised with metal transfer
- Programmable Multi programme storage
 - Input→ Metal type & thickness, wire type & dia and Shield Gas
 - Auto-set→ Current, Voltage, Travel speed, gas flow rate etc.

Transformer Vs. Rectifier

Transformer (AC)

- No choice in polarity
- Not suitable for basic coated and some nonferrous electrode
- Suitable where arc blow is problem
- Suitable where distance between power source & job is high

Rectifier (DC)

- Choice of polarity
- Arc stability better
- Shorter arc possible
- Better for positional welding
- Suitable for all types of electrodes
- More control over parameters

Welding Parameters

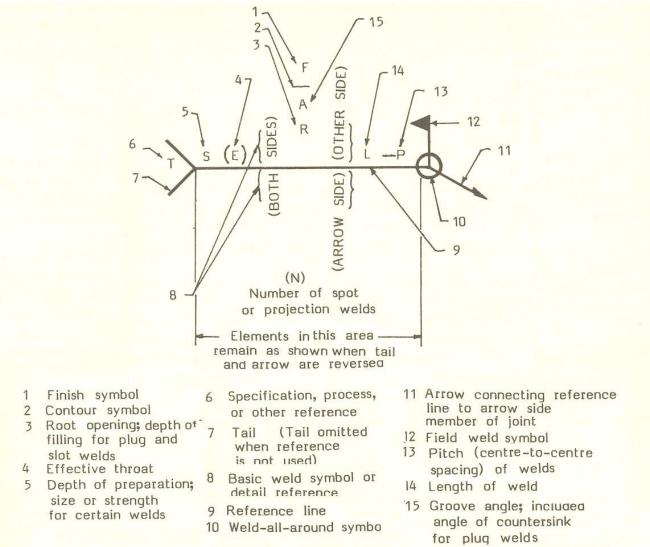
- Major parameters are
 - Welding Voltage (V)
 - Welding current (I)
 - Polarity
 - Traverse speed & Wire feed rate
 - Weaving of bead & Arc length
- In manual welding, left with welder
- In automatic welding, pre set

• Together, they are responsible for defects₁₄

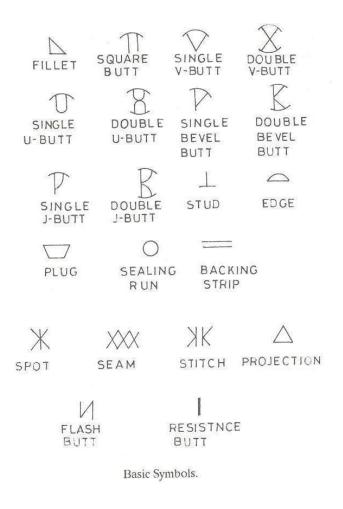
Parameters – V & I

- OCV between 40-90 Volts
- In CC, OCV imp. for starting arc & stability

 Recommended Voltage through coding
- I as per dia & type of electrode/wire
 - Recommended current given on packet
 - Thumb rule 35/25 times for MS/SS wire dia
- Together they decide heat input and Metal Deposition Rate (MDR)

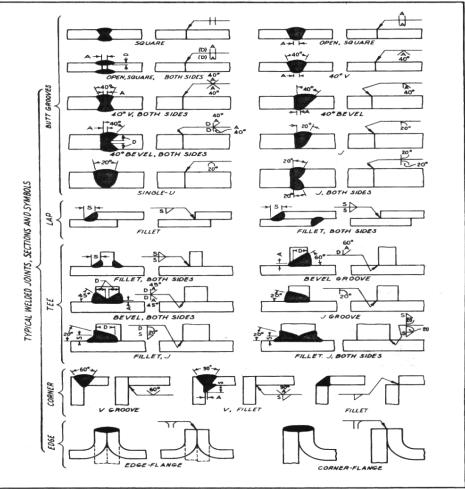

Polarity

- In rectifier we have choice of polarity
 - Straight polarity or Electrode negative (DCEN)
 - Reverse polarity or Electrode positive (DCEP)
- For consumable electrode processes, more heat in electrode when DCEN
- For non- consumable electrode processes, more heat in electrode when DCEP

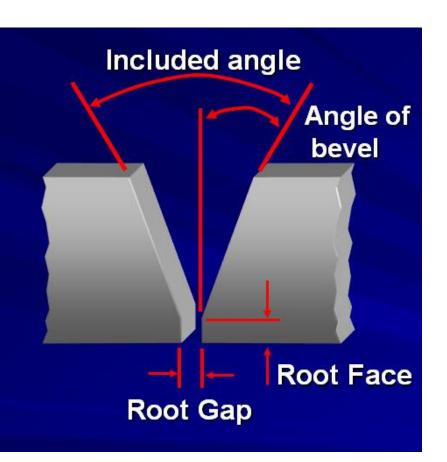

Other parameters

- Traverse speed → Speed at which electrode is moving over job
 Directly related to heat input rate
- Wire feed rate → Rate at which consumable is fed from the wire spool
 Directly related to MDR
- Weaving→ Movement of electrode perpendicular to weld line
- Arc length \rightarrow Gap of electrode tip & job

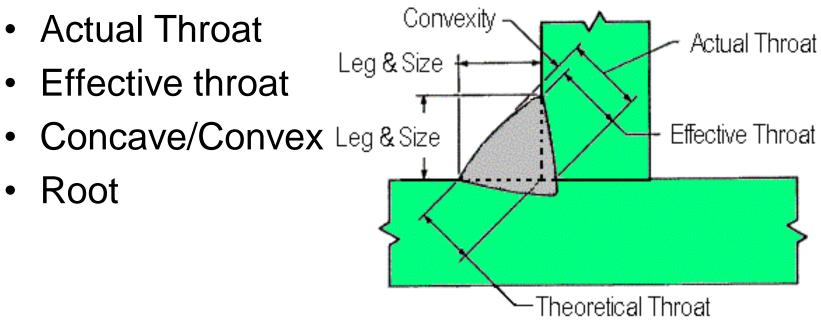
Complete Welding Symbol


Basic Welding Symbols

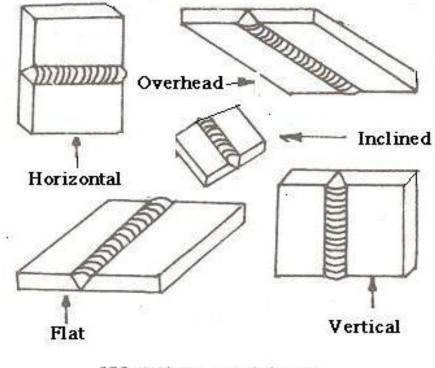
SYMBOL	DRAWING REPRESENTATION	
0		WELD ALL-ROUND
•	A	SITE WELD (ASSEMBLY WELD)
e	E	SITE WELD (ERECTION WELD)
L	N	CONCAVE CONTOUR
-	Ī	FLUSH CONTOUR
	D	CONVEX CONTOUR
м	M	MACHINING FINISH
c	Ne	CHIPPING FINISH
G	G	GRINDING FINISH


Type of Joints & Edge preparation

- Butt
 - Square
 - Single or Double V
 - Single or Double U
 - Single or Double J
- Lap
- Fillet; Single/double
- Corner
- Edge


Nomenclature – Butt

- Root Face
- Root gap
- Included Angle
- Angle of Bevel
- Weld reinforcement


Nomenclature – Fillet

• Leg

Welding Positions

- Flat/Downhand
- Horizontal
- Vertical up/down
- Overhead
- Combinations of above

Welding positions.

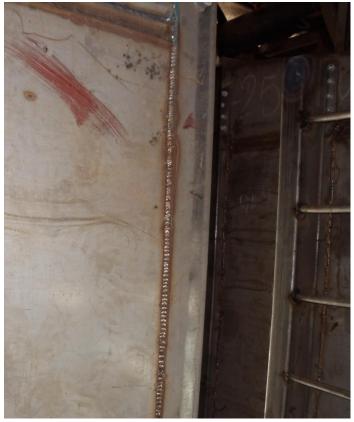
WELDING AIDS & SAFETY

Welding Aids

- Improves quality and aesthetics of weld
 Applicable to semi –automatic welding
- Clamping device for trough floor welding
 Simultaneous clamping & welding
- Vertical weld guide
 - Applicable for welding MS & Ferritic SS
 - Guide rail clings on vertical wall
 - Weld head moves over guide rail

• Similar for inside welding of BOX section

Welding Aid Photos


Clamping Machine

Vertical welding Machine

Welding Quality Photos

V. Welding w/o aid

V. Welding with aid

Welding Automation

- Costly but cost-effective in long run
- Robot welding (fully automatic), no welder
 - Complex contour welding
 - Difficult to access locations
- Semi–automatic (MIG/MAG, SAW)
 - Straight long welds
 - Less welder fatigue, defects & rework
 - Less dependence on welder's skill

Hazards in Welding & Cutting

- Explosion, Fire, Shock
 - Leaking gas pipe, Back fire, Damaged cable, Short circuit, Welding very close to oil/grease, closed vessel with inflammable liq./gas etc.
- Eye injury Ray, Spatter, Metal particle
 - Use safety glass of proper DIN, Welding type specific & Photochromatic
- Body burn Liquid metal, Spatter etc.

– Use proper PPEs like Helmet, Gloves, 11/21/14 Aprons, Leather sole shoes etc.

Pulmonary Hazards

- Welding Gasses
 - $-C_2H_2/LPG/CO_2/Ar Reduces$ available O_2
- Welding Fumes
 - CO Positively injurious & lethal
 - Metal oxide dust Destroys cilias
 - Some metals & oxides are toxic
- Always weld in well ventilated space
- When welding inside tank etc., use either $_{11/21/\overline{14}}$ Mobile fume extractor or Breathing apparatus₃₀

11/16/2014

37