CORROSION REPAIR

CAUSES OF CORROSION:

- Galvanic cell
- Differential stress cell
- Differential temperature cell
- Differential concentration cell
- Differential aeration cell

Metals are readily attacked by most of the suitable chemicals; non-metals are attackedrarely of varying conditions.

Classification of corrosion: Corrosion can be classified on

Temperature basis

- High temperature corrosion
- Low temperature corrosion

Condition basis

- Wet corrosion or electrochemical
- Dry corrosion or oxidation corrosion

Nomenclature of corrosion

A)	Rust	Oxidation product of iron and steel
B)	Oxides	Oxidation product of no-ferrous metals
C)	Ageing	Oxidation product of non-metal
D)	Decay	Oxidation loss of weld deposition metals
		due to absorbed hydrogen or
		Atmospheric oxygen.

Atmospheric

Type of	Characteristic	Prevention
corrosion		
Uniform	More or less uniform	Protective coating and
corrosion	attacksover the entire	catholicprotection
or	exposed surfacewith	wherenatural
General	minimum variation in	resistance is marginal.
corrosion	thedepth of change	
Bimetal	When two or more	It can be minimized by
corrosion	dissimilarmetals are	keepingthe anode large
or	electrically coupled	or avoided
Galvanic	and placed in electrolyte	byelectrically insulating
corrosion.	andresults from the	themembers of the
	existence of apotential	couple withdielectric
	difference between the	spacers provided this
	metals which cause a	insulation is complete.
	flow ofcurrent between	
	them.	
Crossie		
Crevice	A type of corrosive	

attackassociated with the	1. Eliminate crevice
confinedspaces or	2. Design change
crevices formed by	3. Using non-permeable
certain mechanical	gasketor seals
configuration such as	4. Materials with poor
tappedjoint, gasket	wetability
interfaces andtubular	5. Periodic removal of
sleeves. Both	sediments and debris
approximating surfaces	fromtank bottoms
neednot be metal. It is	6. Insuring adequate
alsoassociated with the	adhesionof coating
shieldedareas caused by	
setting out ofparticular	
solids on a surface or	
under marine growth. It	
occursin surface coated	
componentsdue to	
oxygen deficiency.	
Excess of hydrogen ion	
stimulates corrosion.	
A form of localised	Correct selection of
corrosion inwhich the	material with adequate
	attackassociated with theconfinedspaces orcrevices formed bycertain mechanicalconfiguration such astappedjoint, gasketinterfaces andtubularsleeves. Bothapproximating surfacesneednot be metal. It isalsoassociated with theshieldedareas caused bysolids on a surface orunder marine growth. Itoccursin surface coatedcomponentsdue tooxygen deficiency.Excess of hydrogen ionstimulates corrosion.A form of localisedcorrosion inwhich the

	attack is confined to	pitting resistance.
	numerous small cavities	
	on themetal surface a true	
	pit has alength/depth	
	ratio equal or	
	greater than one.	
Cavitation	It superficially resembles	1. Design change
corrosion	pitting, but the surface	2. Cathodic protection
	appearsconsiderably	3. Rubber and
	rougher and hasmany	elastomericmaterial
	closely spaced pits which	4. Proper choice of
	are neat and orderly	materialssuch as
	arrayed. Itis due to	stainless steel in
	plastic deformation	place of brass.
	and honey combing.	
Selective	When one element is	It is intentional
leaching	preferentially dissolved	corrosion forproperty
or selective	from asolid solution, i.e.	modification.
dissolution	when a phase	
	is selectively attacked in	
	analloy. Example	
	dezincificationof brass	
Selective leaching or selective dissolution	When one element is preferentially dissolved from asolid solution, i.e. when a phase is selectively attacked in analloy. Example dezincificationof brass	It is intentional corrosion forproperty modification.

	alloys.	
Erosion	It exemplified by an	1. Design modification
corrosion	increase inthe corrosion	2. More resistance
	rate caused byrelative	materials
	motion between the	
	surface and the	
	environment.Surface	
	exhibits severe weight	
	loss and many scooped	
	out,rounded areas appear	
	likesculptured	
	impression.	
Fretting	Two metals in contact	Proper colour matching
corrosion	underload and having	
	smallrelationship	
	between themexhibit	
	intense attack at the area	
	of contact and is usually	
	revealed by reddening of	
	lubeoil between them.	
Inter-granular	Due to in homogeneous	Careful control of heat
corrosion	condition at the grain	treatingmeasures.

	boundaries. This may be	
	due tosegregation	
	mechanism or	
	intergranular	
	precipitation.	
Exfoliation	Is a special form of	1. Extended ageing
corrosion	intergranularattack,	cycles for
or	which primarily	all alloys
lamellar	affects aluminium and	2. Organic and sprayed
corrosion	magnesium alloys? It is	metalcoating
	directional and is	3. Promoting equi-axed
	characterizedby attack of	grainstructure on the
	the elongated grainon a	surface.
	plane parallel to the	
	rolledor extruded surface.	
	This result	
	in characteristic	
	delimitation or	
	stratification of the	
	surfacestructure.	

Causes of corrosion in Indian Railway coaches:

- Water seepage through the flooring to the top of trough floor
- Leakage of water through lavatory flooring.
- Missing of commode chute and drain pipe.
- Defective water pipe fittings.
- Absence of surface preparation during replacement of commode and drain pipe.
- Habits of flushing the flooring with the water jet for cleaning.

• The conditions of air trapped in between trough floor and flooring due to climate change.

• Striking of flying ballast when the train is running.

• Design of window seal leaves the gap between the side panel to allow the rain water andwater during washing of the coaches flow through the panel and to drain out at thebottom.

• Blockage of drain water by accumulated dust on top of trough floor and other areas of under-frame and panels.

- Improper welding of PVC flooring.
- Improper welding of sole bar box.
- Spreading of water from side filling.

Areas prone to high rate of corrosion in passenger coaches are:

• Trough floor: areas adjacent to lavatory, doorway, and luggage compartment in SLRand kitchen area of pantry car.

• Head stock: areas inner and outer head stock, stiffener, protection tube area, supporttube area etc.

• Side wall bottom: area below lavatory and between body side pillars.

• Body pillars: bottom portion of pillar near doorway and lavatory area.

- Cross bearers: joint between sole bar and cross bearers.
- Body side door: bottom of door due to accumulation of dust.
- Battery boxes: corrosion due to acid action.
- Roof: ventilator and area around it.

Vulnerable members and locations:

• Tubular frame below lavatories and trough floor in bays adjoining lavatories in alltypes of coaches and under the luggage compartments of SLRs and parcel vans andkitchen area of pantry cars.

• Sole-bar, body pillars, turn-under in the bays under and adjoining lavatories in alltypes of coaches and in addition kitchen area of pantry cars.

- Sole bars, turn under and pillars above lifting pads.
- Sole bars and pillars behind the sliding door pockets of SLR"s & parcel vans.
- Sole bars, pillars and turn-under at door corners.
- Side panels below window in non ac coaches and lower portion of body pillars.

Material & treatment of components

It is essential to use low alloy high tensile corten type steel sheets and plates to IRS-M41-1974for repairs of integral coaches. The thickness of steel sheets/plates to be used shall be asunder:

Corrosion repairs

S. No.	Description of components	Thickness of steel
		sheets &
		Plates IRSM 41-
		Gr. I
1	Inner head stock- centre plate	10 mm
	Inner head stock- beam web plate	8 mm
2	Outer head stock	8 mm
3	Sole bar	5 mm
4	End wall stanchions cross bears	4 mm
	above & belowtrough floor	
5	Turn under With elongated holes	4 mm
	Turn under Without elongated holes	2 mm
6	Floor side moulding	2 mm
7	Through floor body side pillars	2 mm
	body side and endwall panels waist	
	rail and light rail	
8	Roof sheet	1.6 mm

• All body shell replacement components less than 5 mm thickness used for corrosionrepairs should be hot phosphate and applied with protective paints. Cold phosphateshould be done body wall side panel areas where welding has been carried out on hot Phosphate components.

• Zinc rich primer should be used where spot welding is done. Components of 5 mm ormore thickness should be grit blasted and immediately followed by application of redoxide zinc chromate primer.

• Welding electrodes and paints should be of the prescribed quality conforming to therelevant IS/ IRS specification. Where the corrosion noticed is of a very minor nature andhas just started, there is no need to renew parts. The paint and rust should be thoroughlycleaned to reach the bare metal and the surface treated with two coats of primer. Inaddition under frame members should be given four coats of bituminous solution.

• Design improvements / modifications: Several design improvements/ modifications foreliminating/minimising corrosion have been issued by the RDSO/ICF from time to time. Brief details of these together with the action to be taken by the railways are given below: • FRP tissue sandwiched between layers of bitumensince 1982 FRP tissue sandwiched between bituminous coats has been laid on trough floor, sidewall and body pillars up to waist rail height and the entire under frame.On these post 1982 coaches, whenever corrosion repair is carried out on portion laid with FRP tissue, patch repair of the FRP tissue should also be done to the extent to which theoriginal lining is removed for repairs to the corresponding parts.

• Trough floor: 13 mm dia. holes provided in the valleys of through floor for drainage of condensation were increased to 19 mm so as to allow quicker drainage. This modificationmay be incorporated in all coaches, if not already done, whenever trough floor is laidwith FRP tissue, these holes should be pierced through.

• Stainless steel trough floor: use of austenitic stainless steel in place of corten type steel toIRSM-41 has been made in parcel vans, SLRs and pantry cars, where corrosion maybecome

prominent due to carriage of perishables and where there is possibility of seepageof water to a large extant. Earlier ICF had turned out some SCN coaches also withaustenitic stainless steel trough floor. Coaches provided with austenitic stainless steel trough floor should be repaired with equivalent material using special type of low heatinput type electrodes. Now a decision has been taken to provide SS trough floor in alltypes of coaches through RSP.

• Sealing of window sills: To prevent seepage of water through the gap between the sidewall and window sill, a modified arrangement as per RDSO sketch • 76014 has been introduced on all coaches which are being turned out by ICF from 1975 onwards. Thismodification has not eliminated the seepage of water and problem still persists. Furtherdesign modification is required to mitigate the problem.

• Lavatory pan with longer neck: The neck of the lavatory pan have been increased by 100mm. to avoid drain water from spilling over troughfloor and connected members. It is essential that at the time of corrosion repairs in thelavatory area or renewal of magnesium oxy-chloride flooring composition in thelavatories, pans having shorter neck may be used only after welding an additional piece tothe neck to bring it in conformity with RDSO (Drg.No.C/LF-1880 AIL-3drawing not available,)

• Stainless steel inlay in lavatory instead of decolite flooring: In order to eliminate anyleakage of water or chloride through the floor leading to corrosion of the underframe, ICFhas started providing a stainless steel inlay in the lavatory with conventional lavatory panduly supported as per RDSO (Drg.No. ICF/SK-1-0-666 Alt. d., Drawing not available). The stainless inlay is made from 1.6 mm steel sheet and has a skirting up to waist rail. The inlay is provided with a 20 mmslope for smooth flow of water towards lavatory pan. 2 mm thick PVC overlay is postedover the inlay. Some railways have tried the floor of polyurethane layer in the lavatoriesto prevent the leakage of water.

• PVC flooring over plywood: Till 1988, the standard flooring in lower class coaches hasbeen timber floor boards with magnesium

oxy-chloride and in first class coaches, corridor, doorways, gangways and lavatories were provided with timber floor boards withmagnesium oxy-chloride flooring and compartment portion was provided with PVCpasted over plywood with timber flooring. In case of AC coaches, doorways, gangwaysand lavatories were provided with timber floor boards with magnesium oxy-chloride

flooring and compartment portion was provided with PVC pasted over plywood andtimber flooring board till 1982. In order to prevent seepage of water through decoliteflooring to eliminate release of chloride ion leading to corrosion, flooring consisting of

PVC over plywood has been introduced in all areas except lavatory since 1983 in ACcoaches and since 1989 in second class coaches. Now the plywood has been replaced with compreg board. Aluminium chequered sheets are laid over the PVC near door bays

and lavatory bays to prevent the seepage of water.

• Battery box frames: To prevent corrosion battery box frames are now being hotgalvanised before riveting aluminium sheets. This should be ensured during POH. Inaddition, to prevent acid from batteries coming in contact with battery boxes, the batteryboxes should be fitted with FRP trays to ICF drg.No.GS-7-1-018 during POH. If andwhen battery boxes need renewal, the new battery box should be to RDSO (Drg.No.GS-7-1-015., drawing not available)

