

#### DPRS

- Stands for Distributed Power Rolling Stock
- Class of vehicles fit to move on Railway systems and one where the Propulsion systems and Powered wheels for providing tractive force are distributed over more than one and mostly large number of vehicles
- This is opposed to locomotive hauled trains where the equipment and powered wheels producing Tractive effort are contained in vehicle/ vehicles which are non-passenger carrying and are coupled to passenger cars through mechanical coupling

Internal Power Source - Diesel Electric and Hydraulic Multiple Unit with AC-DC or AC- AC Drive or Hydraulic Drive.

External Power source - EMU/ MEMU Train sets drawing power from AC OHE with DC Motors or AC Motors OR DC OHE or third rail with AC Motors.

The advent of IGBT's on a large scale has made the AC-AC drives very popular in terms of energy efficiency and maintenance. IGBT based inverters have also made regenerative braking on a large scale feasible and improved energy efficiency.

#### Difference between DPRS and Trainsets ???



#### **DELHI METRO**

(Constant)

*♦The Indian***EXPRESS** 

#### SHINKANSEN

- 100 % powered trainset
- All axles in a bullet train are propelled by a traction motor





#### **DPRS Types in Indian Railways**



### DMU

**DMU(Diesel Multiple Unit)** is a multiple-unit train powered by on-board diesel engines.

A DMU requires no separate locomotive, as the engines are incorporated into one or more of the carriages.

#### • DIESEL MECHANICAL MULTIPLE UNIT(DMMU)

rotating energy of the engine is transmitted via a gearbox and driveshaft directly to the wheels of the train

#### • DIESEL HYDRAULIC MULTIPLE UNIT(DHMU)

a hydraulic torque converter, a type of fluid coupling, acts as the transmission medium for the motive power of the diesel engine to turn the wheels.

#### • DIESEL ELECTRIC MULTIPLE UNIT(DEMU)

a diesel engine drives an electrical generator or an alternator which produces electrical energy. The generated current is then fed to electric traction motors on the axles





#### Diesel Electrical Multiple Unit (DEMU)

- Manufacturer : ICF
- Engine: Kirloskar Cummins, Caterpiller in 1600 HP DEMU
- Transmission: Electric AC- DC in 700 & 1400 HP DEMU,
- AC-AC in 1600 HP DEMU
- Bogie: BO-BO (All O4 wheels are powered parallelly)
- Mostly operates in non-electrified plain regions & low traffic density branch line services

#### EMU (Electrical Multiple Unit)

- Manufactured at ICF & BEML
- Self propelled electric vehicles
- Obtain power from overhead OHE 25KV single phase AC or 1500 V DC
- Basically consists of
- End basic unit- Motor coach + driving trailer coach + trailer coach
- Middle basic unit Motor coach + trailer coach + non driving trailer coach
- 3-4 units in train formation
- Generally used in sub-urban railway transport
- Designed for super dense crush load



End basic unit



Middle basic unit



#### MEMU (Mainline Electrical Multiple unit)

Manufactured in ICF & RCF

Employed for main line medium distance operations

Consists of a motor car and three trailer cars

Propulsion system, control circuit similar to EMU but dimensional differences are there

Maximum axle load of trailer coach 16.25 T – Not designed for super dense crush load

2 units in a train formation



#### EMU v/s MEMU

#### GENERAL DATA

|    | Description                                                                     |                                   | EMU                                            |                                   | MEMU                  |                      | MU                                 | Reference                                                                                               |
|----|---------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------|-----------------------------------|-----------------------|----------------------|------------------------------------|---------------------------------------------------------------------------------------------------------|
| S/ | -                                                                               |                                   | M/C T/C                                        |                                   | M/C                   | M/C T/C              |                                    |                                                                                                         |
| no |                                                                                 |                                   |                                                | -,-                               |                       |                      | -/-                                |                                                                                                         |
| 1  | Type of Stock                                                                   |                                   | AC BG EMU<br>WAU4                              |                                   | AC BG MEMU            |                      | MEMU                               |                                                                                                         |
| 2  | Coach Builder                                                                   |                                   | ICF & BEML                                     |                                   | ICF & RCF             |                      | RCF                                |                                                                                                         |
| 3  | Manufacturer of Traction<br>equipments including Tr.<br>Motor, Transformer etc. |                                   | BHEL & CGL                                     |                                   | BH                    | BHEL                 |                                    |                                                                                                         |
| 4  | Unit formation                                                                  |                                   | DMC+TC+TC                                      |                                   | DMC+TC+TC+T<br>C      |                      | TC+TC+T                            |                                                                                                         |
| 5  | Train formation                                                                 |                                   | 3/4 units                                      |                                   | 2 units               |                      |                                    |                                                                                                         |
| 6  | No. of Driving Cabs                                                             |                                   | 2                                              |                                   | 2                     |                      |                                    |                                                                                                         |
| 7  | Type of Traction                                                                |                                   | 25 KV AC                                       |                                   | 25 KV AC              |                      | AC                                 |                                                                                                         |
| 8  | Wheel arrangement                                                               |                                   | Bo-Bo E                                        |                                   | Bo-                   | Bo-Bo                |                                    |                                                                                                         |
| 9  | Brake system                                                                    |                                   | Self lapping electro pneumatic<br>brake system |                                   |                       |                      |                                    |                                                                                                         |
| 10 | Axle Load capacity in Tonnes<br>i) Conventional EMU/MEMU<br>ii) HCC             |                                   | 20.32<br>20.32                                 | 13.0<br>20.32T                    | 20.                   | 32                   | 13.0<br>                           | RDSO specification no.<br>K3-B-01, Feb'03<br>& for EMU T/C- EMU-<br>2/A-9-0-501 and<br>EMU-2/D-9-0-503. |
| 11 | Wheel Diameter (New)                                                            | mm.                               | 952 952                                        |                                   | 952                   |                      |                                    |                                                                                                         |
| 12 | Wheel Diameter (Condemning)                                                     |                                   | 877                                            | 857                               | 877                   | 7                    | 857                                | RDSO manual no.<br>CMI-K001 (Apr'2000)                                                                  |
|    | HCC                                                                             |                                   | 865                                            | 865                               |                       |                      |                                    |                                                                                                         |
| 13 | Gear ratio                                                                      |                                   | 20:91                                          |                                   | 20:                   | 91                   |                                    |                                                                                                         |
| 14 | Train performance per unit<br>rating<br>Horse power                             |                                   | Cont.<br>896                                   | nt. 1 hr.                         |                       |                      | ACTM Volume-III, 1994              |                                                                                                         |
|    | Tractive effort (T)                                                             |                                   | 4.8                                            | 5.8                               | 5.8                   |                      |                                    |                                                                                                         |
| 15 | Traction motor rating:<br>Type                                                  | 4601AZ/E<br>4303AZ/C<br>Cont. 1   | BZ/BX/BY                                       | 4303BY<br>(BHEL)<br>Cont. 11      | ar.                   | C10<br>(CG           | 005 TM<br>EL)                      | ACTM Volume-III, 1994<br>& Manufacturer's<br>maintenance manual.                                        |
|    | Volts (V)<br>Current (A)<br>Output (KW)<br>RPM                                  | 535 5<br>340 3<br>167 1<br>1260 1 | 35<br>80<br>.87<br>.182                        | 535 5<br>425 4<br>207 2<br>1170 1 | 35<br>65<br>27<br>120 | 56<br>41<br>21<br>11 | 3 563<br>5 455<br>0 228<br>70 1135 |                                                                                                         |
| 16 | KVA rating of transform                                                         | ner                               | 1000                                           |                                   |                       |                      |                                    |                                                                                                         |
| 17 | Normal acceleration<br>Kmph<br>Level track, CLR set<br>Amps.                    | to 40<br>at 500                   | 1.6 Km/                                        | /Hr./Sec                          |                       |                      |                                    | BHEL Maintenance<br>Manual no. MM/AC-<br>M/EMU/003, Jan'01                                              |
| 18 | No. of pass./unit -<br>Dens                                                     | Normal<br>Crush<br>e crush        | 400<br>774<br>1148                             |                                   |                       |                      |                                    | ACTM Volume-III, 1994                                                                                   |

|     |                                                     | EMU                                  |          | MEMU                    |           |                                                  |  |
|-----|-----------------------------------------------------|--------------------------------------|----------|-------------------------|-----------|--------------------------------------------------|--|
| 10  | The second is the                                   | MC                                   | TC       | MC                      | TC        | For MEMU (M/C)-<br>Drg. No. MEMU/DMC-<br>9-0-012 |  |
| 19  | lare weight                                         | 59.3T                                | C-30.5T  | 61 T                    | 33.15T    |                                                  |  |
|     |                                                     |                                      | D-31.5T  |                         |           |                                                  |  |
| 20  | No. of Seats                                        | 98                                   | 112      | 68/81                   | 80/108    | (i) Drg. No. MEMU/TC <sub>2</sub> -              |  |
|     |                                                     |                                      | (C type) |                         |           | 9-0-201,<br>(3) MEMU (DMC- 0.0                   |  |
|     | Vendor Coach                                        |                                      | 88       |                         | No        | (11) MEMO/DMC2-9-0-<br>201.                      |  |
|     |                                                     |                                      | (D type) |                         | Vendor    | (iii) MEMU/TC-9-0-001,                           |  |
|     |                                                     |                                      |          |                         |           | (iv) EMU-2/A-9-0-501,                            |  |
| 0.1 |                                                     | 2010                                 |          | 2006                    |           | (v) EMU-2/D-9-0-503                              |  |
| 21  | Max. height above rail to                           | 3810 mm                              |          | 3886 mm                 |           | 1) Drg. No.<br>MEMU/DMC2-9-0-201                 |  |
|     | top of roof                                         |                                      |          |                         |           | ii)EMU/M-9-0-006                                 |  |
| 22  | Max. length of the body                             | 20726 mm                             |          | 215                     | 21337     | i) EMU/M-9-0-006                                 |  |
|     |                                                     |                                      |          | 67                      | mm        | ii)EMU-2/A-9-0-501                               |  |
|     |                                                     |                                      |          | mm                      |           | 201                                              |  |
|     |                                                     |                                      |          |                         |           | iv)MEMU/TC-9-0-001                               |  |
| 23  | Max. width of the body                              | 3658 mm                              |          | 3245 mm                 |           | do                                               |  |
| 24  | Floor height from rail level                        | 1197mm                               |          | 1278mm                  |           | i) Drg. No.                                      |  |
|     |                                                     |                                      |          |                         |           | MEMU/DMC <sub>2</sub> -9-0-201,                  |  |
| 26  | Height of coach (rail level to                      | 1208mm                               |          | 4255mm                  |           | i) Drg. No.                                      |  |
| 20  | nanto at home)                                      | 10,0011111                           |          | 120011111               |           | MEMU/DMC <sub>2</sub> -9-0-201,                  |  |
|     | panto at nome,                                      |                                      |          |                         |           | ii) EMU/M-9-0-006.                               |  |
| 27  | Min. height above rail level 210 <sup>+5</sup> -0 m |                                      | nm       | 210 <sup>+5</sup> -0 mm |           | i) Drg. No. DMU/                                 |  |
|     | to the lowest fitting on                            | 188 (for air spring                  |          |                         |           | ii) Drg. No. EMU-2-6-                            |  |
|     | under frame under tare                              |                                      | coaches) |                         |           | 046.                                             |  |
| 28  | Length of 9 car rake                                | 194.12m<br>172.638m.<br>258m.        |          | 177.616m.               |           | As measured.                                     |  |
|     | Length of 8 car rake                                |                                      |          |                         |           |                                                  |  |
|     | Length of 12 car rake                               |                                      |          |                         |           |                                                  |  |
| 29  | Distance between front &                            |                                      |          |                         |           |                                                  |  |
|     | rear pantographs:                                   |                                      |          |                         |           |                                                  |  |
|     | 12 car rake                                         | 226.5 m (approx.)<br>162 m (approx.) |          |                         |           | -Do-                                             |  |
|     | 9 car rake                                          |                                      |          |                         |           |                                                  |  |
|     | 8 car rake                                          |                                      | -        |                         | (approx.) |                                                  |  |

#### BEMU

- A battery electric multiple unit (BEMU), battery electric railcar or accumulator railcar is an electrically driven multiple unit or railcar whose energy is derived from rechargeable batteries driving the traction motors.
- Prime advantages of these vehicles is that they do not use fossil fuels such as coal or diesel fuel, emit no exhaust gases and do not require the railway to have expensive infrastructure like electric ground rails or overhead catenary. On the down side is the weight of the batteries, which raises the vehicle weight, and their range before recharging of between 300 and 600 kilometres.



#### T-18

- Train-18 is 16 car train with 4 basic unit i.e. Two number of end basic unit (DTC-MC-TC-MC) and two number of middle basic unit (NDTC-MC-TC-MC)
- Semi-high speed (160 kmph) multiple unit train-set.
- Train-18 is provided with **IGBT** based energy efficient 3 phase propulsion system and regenerative braking
- Stainless steel car body with continuous window glasses
- All propulsion equipments are shifted from onboard to under-slung. All power components such as line & traction converters, auxiliary converter, air compressor, battery box, battery charger, brake chopper resister are mounted under the frame
- Zero discharge vacuum-based bio-toilets
- Modern **bolster-less** design bogies with **fully suspended** *traction motors,*
- Train-18 has 50% powering i.e. Every alternate coach is powered
- Ethernet backbone



# Advantages of DPRS

- Better acceleration and deceleration
- Saving in run time
- Energy efficient
- Enhanced safety
- Reduced maintenance
- Improved reliability
- Reduction in pollution
- Improved passenger comfort
- Improved line capacity
- Designed to handle super dense crush load

#### Better acceleration and deceleration

| <b>Operational Characteristics</b> | Loco Hauled 21 coach<br>Rajdhani Train | Rajdhani run with<br>EMU Train set |  |  |
|------------------------------------|----------------------------------------|------------------------------------|--|--|
| Acceleration (Starting)            | 0.22 m/s <sup>2</sup>                  | 1.0 m/s <sup>2</sup>               |  |  |
| Deceleration                       | 0.20 m/s <sup>2</sup>                  | $1.0 \text{ m/s}^2$                |  |  |
| Time to achieve 130 kmph           | 279 seconds                            | 50.3 seconds                       |  |  |
| Distance required to travel to     | 6489 meters                            | 1089.7 meters                      |  |  |
| attain a speed of 130 kmph         |                                        |                                    |  |  |
| Additional time required for       | 216 seconds                            | 41 seconds                         |  |  |
| acceleration and deceleration      |                                        |                                    |  |  |
| for a halt with maximum            |                                        |                                    |  |  |
| speed of 130 kmph                  |                                        |                                    |  |  |





# Saving in run time

#### Reduction in run time between New Delhi and Howrah with Train sets

| Time Loss in<br>deceleration             | Acceleration and                                                                                                                                                        | Time saved<br>by Train<br>sets vis-a-                                                                                                                                                                                     | No of speed restrictions                                                                                                                                                                                                                                                                                                                                                         | Total time<br>Saving<br>with train                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| By Loco<br>hauled<br>trains<br>(Seconds) | By Train sets<br>with acceleration<br>and deceleration<br>@ 1 m/s <sup>2</sup> (Sec)                                                                                    | vis Loco<br>hauled train<br>(Sec)                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                  | sets(in<br>sec)                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 216                                      | 41                                                                                                                                                                      | 175                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                | 1050                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 198                                      | 36                                                                                                                                                                      | 162                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                | 972                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 180                                      | 30.                                                                                                                                                                     | 150                                                                                                                                                                                                                       | 13                                                                                                                                                                                                                                                                                                                                                                               | 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 162                                      | 24.                                                                                                                                                                     | 138                                                                                                                                                                                                                       | 31                                                                                                                                                                                                                                                                                                                                                                               | 4278                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 144                                      | 20                                                                                                                                                                      | 124                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                | 744                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 126                                      | 16                                                                                                                                                                      | 110                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                | 660                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 111                                      | 13                                                                                                                                                                      | 98                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                | 392                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 93                                       | 10                                                                                                                                                                      | 83                                                                                                                                                                                                                        | 19                                                                                                                                                                                                                                                                                                                                                                               | 1577                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 75                                       | 7                                                                                                                                                                       | 68                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                | 272                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 57                                       | 5                                                                                                                                                                       | 52                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 39                                       | 3                                                                                                                                                                       | 36                                                                                                                                                                                                                        | 17                                                                                                                                                                                                                                                                                                                                                                               | 612                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 27                                       | 2                                                                                                                                                                       | 25                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 9                                        | 1                                                                                                                                                                       | 8                                                                                                                                                                                                                         | 14                                                                                                                                                                                                                                                                                                                                                                               | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Total T                                  | ime savings                                                                                                                                                             |                                                                                                                                                                                                                           | 135                                                                                                                                                                                                                                                                                                                                                                              | 12952                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                          | Time Loss in<br>deceleration<br>By Loco<br>hauled<br>trains<br>(Seconds)<br>216<br>198<br>180<br>162<br>144<br>126<br>111<br>93<br>75<br>57<br>39<br>27<br>9<br>Total T | Time Loss in Acceleration and decelerationBy Loco hauled trains<br>(Seconds)By Train sets with acceleration and deceleration<br>(@ 1 m/s² (Sec))216411983618030.16224.144201261611113931075757539327291Total Time savings | Time Loss in Acceleration and<br>decelerationTime saved<br>by Train<br>sets vis-a-<br>vis Loco<br>hauled train<br>(Seconds)Time saved<br>by Train sets<br>with acceleration<br>(@ 1 m/s² (Sec)Time saved<br>by Train<br>sets vis-a-<br>vis Loco<br>hauled train<br>(Sec)216411751983616218030.15016224.1381442012412616110111139893108375768575523933627225918Total Time savings | Time Loss in AccelerationTime saved<br>by Train<br>sets vis-a-<br>vis Loco<br>hauled<br>trains<br>(Seconds)By Train sets<br>with acceleration<br>(@ 1 m/s² (Sec)Time saved<br>by Train<br>sets vis-a-<br>vis Loco<br>hauled train<br>(Sec)No of speed<br>restrictions216By Train sets<br>with acceleration<br>(@ 1 m/s² (Sec)175619836162619836162618030.1501316224.138311442012461111398493108319757684575524393361727225591814Total Time savings135 |  |

#### Energy efficiency

- Propulsion equipment is mounted on coach, hence requirement of locomotives and power car is eliminated.
- Weight of locomotives and power cars is 1/3<sup>rd</sup> of the total formation. Hence, removing them saves energy.
- The space of locomotives and power cars may be utilized to augment more coaches in DPRS leading to greater Passenger Km
- Aerodynamically much more stable and lesser air resistance

#### Enhanced safety

- Most DPRS have regenerative and Electro pneumatic braking features, Emergency braking distance is reduced
- Reduce jerks due to smoother acceleration and deceleration due distributed power and traction forces
- Anti-telescopic design

# Reduced maintenance

- Reduced wear of track and wheels since power is distributed
- Regenerative & EP braking improves wheel life
- 3 phase IGBT VVVF propulsion
- AC asynchronous traction motor

#### Improved reliability





3 PHASE IGBT TECHNOLOGY IS HIGHLY RELIABLE DISTRIBUTED POWERING HAS A LOT OF IN BUILT REDUNDANCY, SINCE 50-60 % OF AXLES ARE POWERED.



•] L

MAN MACHINE INTERFACE GIVES APT FEEDBACK ABOUT ANY ISSUES IN THE PROPULSION SYSTEM. IN-BUILT FAULT DIAGNOSTICS.

# Improved line capacity



Faster acceleration & deceleration leads in time required to clear a critical section



Higher carrying capacity of DPRS will reduce number of trains required for same throughput.

#### Specific Energy Consumption (SEC)

- It is the net energy consumption of a train per 1000 Gross Ton per km (GTKM)
- It can be an indicator of energy efficiency, only if two trains of similar weight & auxiliary load are running in the same section for given time table.
- Energy efficacy of two trains can be compared based on the % regeneration for one all-out run cycle up to a maximum service speed under loaded condition.

#### Factors Affecting SEC

Efficiency of propulsion equipment:



overall system efficiency

#### Factors Affecting SEC

Train Resistance (TR):

Improved aerodynamic profile of the train results in lower value of TR, especially at higher speeds. This reduces the net energy consumption of the train.



#### SEC versus Regeneration

- SEC of two different trains can't be compared without knowing the boundary conditions.
- With the increase in train weight, SEC generally reduces. Thus, it conflicts with the energy saving needs.
- Measurement of SEC in actual section is difficult.
- The best way is to define the regeneration requirement for one all-out run cycle.
- It is easy to measure and validate the %regeneration at pantograph level.

#### Aerodynamic drag of a typical train



## THANK YOU