ENGINEERING DRAWING

CONTENTS--- \rightarrow PROJECTIONS OF PLANES
\rightarrow PROJECTIONS OF SOLIDS
\rightarrow ISOMETRIC PROJECTIONS

CHAPTER-10

PROJECTIONS OF PLANES

PROJECTIONS OF PLANES

In this topic various plane figures are the objects.

What is usually asked in the problem?

To draw their projections means F.V, T.V. \& S.V.
What will be given in the problem?

1. Description of the plane figure.
2. It's position with HP and VP.

In which manner it's position with HP \& VP will be described?

1.Inclination of it's SURFACE with one of the reference planes will be given.
2. Inclination of one of it's EDGES with other reference plane will be given (Hence this will be a case of an object inclined to both reference Planes.)

CASE OF A RECTANGLE - OBSERVE AND NOTE ALL STEPS.

PROCEDURE OF SOLVING THE PROBLEM:

in three steps each problem can be solved:(As Shown In Previous Illustration)
STEP 1. Assume suitable conditions \& draw Fv \& Tv of initial position.
STEP 2. Now consider surface inclination \& draw $2^{\text {nd }} F v$ \& Tv.
STEP 3. After this, consider side/edge inclination and draw $3^{\text {rd }}$ (final) Fv \& Tv.

ASSUMPTIONS FOR INITIAL POSITION:

(Initial Position means assuming surface // to HP or VP)

1. If in problem surface is inclined to HP - assume it // HP

Or If surface is inclined to VP - assume it // to VP
2. Now if surface is assumed // to HP- It's TV will show True Shape.

And If surface is assumed // to VP - It's FV will show True Shape.
3. Hence begin with drawing TV or FV as True Shape.
4. While drawing this True Shape -
keep one side/edge (which is making inclination) perpendicular to xy line (similar to pair no. A on previous page illustration).

Now Complete STEP 2. By making surface inclined to the resp plane \& project it's other view. (Ref. $2^{\text {nd }}$ pair B on previous page illustration)

Now Complete STEP 3. By making side inclined to the resp plane \& project it's other view. (Ref. $3^{\text {nd }}$ pair (C) on previous page illustration)

APPLY SAME STEPS TO SOLVE NEXT ELEVEN PROBLEMS

Q.1.: A regular pentagon of 25 mm side has one side on the ground. Its plane is inclined at 45° to the HP and perpendicular to the VP. Draw its projections and show its traces

Hint: As the plane is inclined to HP, it should be kept

 parallel to HP with one edge perpendicular to VP
Q.2.: Draw the projections of a circle of 5 cm diameter having its plane vertical and inclined at 30° to the V.P. Its centre is 3 cm above the H.P. and 2 cm in front of the V.P. Show also its traces

Q.3.: Draw the projections of a regular hexagon of 25 mm sides, having one of its side in the H.P. and inclined at 60 to the V.P. and its surface making an angle of 45° with the H.P.

Q.4.: A square $A B C D$ of 50 mm side has its corner A in the H.P., its diagonal $A C$ inclined at 30° to the H.P. and the diagonal BD inclined at 45° to the V.P. and parallel to the H.P. Draw its projections.

Keep AC parallel to the H.P. \& BD perpendicular to V.P. (considering inclination of
 $A C$ as inclination of the
 plane)

Incline AC at 30° to the H.P. i.e. incline the edge view

Incline BD at 45° to the V.P.

Q.5.: Draw projections of a rhombus having diagonals 125 mm and 50 mm long, the smaller diagonal of which is parallel to both the principal planes, while the other is inclined at 30° to the H.P.

Keep AC parallel to the H.P. \& BD perpendicular to V.P. (considering inclination of AC as inclination of the plane)

Incline AC at 30° to the H.P. Make BD parallel to $X Y$

Q.6.:A regular hexagon of 40 mm side has a corner in the HP. Its surface inclined at 45° to the HP and the top view of the diagonal through the corner which is in the HP makes an angle of 60° with the VP. Draw its projections.

Q.7.:A semicircular plate of 80 mm diameter has its straight edge in the VP and inclined at 45 to HP. The surface of the plate makes an angle of 30 with the VP. Draw its projections.

Q.8.: A thin rectangular plate of sides $60 \mathrm{~mm} \times 30 \mathrm{~mm}$ has its shorter side in the V.P. and inclined at 30° to the H.P. Project its top view if its front view is a square of 30 mm long sides

A rectangle can be seen as a square in the F.V. only when its surface is inclined to VP. So for the first view keep the plane // to VP \& shorter edge \perp to HP

F.V. (square) is drawn first

```
Incline }\mp@subsup{a}{1}{}\mp@subsup{}{}{\prime}\mp@subsup{b}{1}{}\mp@subsup{}{}{\prime}\mathrm{ ' at }3\mp@subsup{0}{}{\circ}\mathrm{ to the H.P.
```


Q.9.: A circular plate of negligible thickness and $\mathbf{5 0} \mathbf{~ m m}$ diameter appears as an ellipse in the front view, having its major axis 50 mm long and minor axis 30 mm long. Draw its top view when the major axis of the ellipse is horizontal.

```
A circle can be seen as a
ellipse in the F.V. only when its
surface is inclined to VP. So for
the first view keep the plane //
to VP.
```


Incline the T.V. till the

 distance between the end projectors is 30 mm
Incline the F.V. till the major axis becomes horizontal

Problem 1:

Rectangle 30 mm and 50 mm sides is resting on HP on one small side which is 30° inclined to VP,while the surface of the plane makes 45^{0} inclination with HP. Draw it's projections.

Read problem and answer following questions

1. Surface inclined to which plane? ------- HP
2. Assumption for initial position? ------// to HP
3. So which view will show True shape? --- TV
4. Which side will be vertical? ---One small side. Hence begin with TV, draw rectangle below X-Y drawing one small side vertical.

Problem 2:

A $30^{\circ}-60^{\circ}$ set square of longest side 100 mm long, is in VP and 30° inclined to HP while it's surface is 45° inclined to VP. Draw it's projections
(Surface \& Side inclinations directly given)

Read problem and answer following questions
1.Surface inclined to which plane? ------- VP
2. Assumption for initial position? ------// to VP
3. So which view will show True shape? --- FV
4. Which side will be vertical? ------longest side.

Hence begin with FV, draw triangle above $X-Y$ keeping longest side vertical.

Surface // to Vp Surface inclined to Vp

Problem 3:
A $30^{\circ}-60^{\circ}$ set square of longest side 100 mm long is in VP and it's surface 45° inclined to VP. One end of longest side is 10 mm and other end is 35 mm above HP. Draw it's projections

(Surface inclination directly given. Side inclination indirectly given)

Read problem and answer following questions
1 .Surface inclined to which plane? ------- VP
2. Assumption for initial position? ------// to VP
3. So which view will show True shape? --- FV
4. Which side will be vertical? ------longest side.

Hence begin with FV, draw triangle above $X-Y$ keeping longest side vertical.

First TWO steps are similar to previous problem. Note the manner in which side inclination is given.

Problem 4:

A regular pentagon of 30 mm sides is resting on HP on one of it's sides with it's surface 45^{0} inclined to HP .
Draw it's projections when the side in HP makes 30° angle with VP

```
SURFACE AND SIDE INCLINATIONS
    ARE DIRECTLY GIVEN.
```

Read problem and answer following questions

1. Surface inclined to which plane?
------- HP
2. Assumption for initial position? ------ // to $\boldsymbol{H} \boldsymbol{P}$
3. So which view will show True shape? --- TV
4. Which side will be vertical? -------- any side.

Hence begin with TV,draw pentagon below
X-Y line, taking one side vertical.

Problem 5:

A regular pentagon of 30 mm sides is resting on HP on one of it's sides while it's opposite vertex (corner) is 30 mm above HP.
Draw projections when side in HP is 30° inclined to VP.
SURFACE INCLINATION INDIRECTLY GIVEN SIDE INCLINATION DIRECTLY GIVEN:

Read problem and answer following questions

1. Surface inclined to which plane? ------- HP
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? --- TV
4. Which side will be vertical? -------any side.

Hence begin with TV,draw pentagon below X-Y line, taking one side vertical.

ONLY CHANGE is

the manner in which surface inclination is described:
One side on Hp \& it's opposite corner 30 mm above Hp.
Hence redraw $1^{\text {st }} \mathrm{Fv}$ as a $2^{\text {nd }} \mathrm{Fv}$ making above arrangement.
Keep a'b' on $x y \& d^{\prime} 30 \mathrm{~mm}$ above xy .

Problem 6: A rhombus of diagonals 40 mm and 70 mm long respectively has one end of it's longer diagonal in HP while that diagonal is 35° inclined to HP. If the topview of the same diagonal makes 40° inclination with VP, draw it's projections.

Read problem and answer following questions

1. Surface inclined to which plane? \qquad
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? --- TV
4. Which diagonal horizontal? ---------- Longer

Hence begin with TV,draw rhombus below

 X-Y line, taking longer diagonal // to X - YProblem 7: A rhombus of diagonals 40 mm and 70 mm long respectively having one end of it's longer diagonal in HP while that diagonal is 35° inclined to HP and makes 40° inclination with VP. Draw it's projections.

Note the difference in construction of $3^{\text {rd }}$ step in both solutions.

The difference in these two problems is in step 3 only In problem no.6 inclination of Tv of that diagonal is given, It could be drawn directly as shown in $3^{\text {rd }}$ step. While in no. 7 angle of diagonal itself l.e. it's TL, is given. Hence here angle of TL is taken,locus of c_{1} Is drawn and then LTV I.e. a1 c1 is marked and final TV was completed. Study illustration carefully.

Problem 8: A circle of 50 mm diameter is resting on Hp on end A of it's diameter AC which is 30° inclined to Hp while it's Tv is 45° inclined to Vp.Draw it's projections.

Read problem and answer following questions 1. Surface inclined to which plane? \qquad
\qquad // to HP
3. So which view will show True shape? --- TV
4. Which diameter horizontal? \qquad $A C$

Hence begin with TV,draw rhombus below

 X-Y line, taking longer diagonal // to $X-Y$Problem 9: A circle of 50 mm diameter is resting on Hp on end A of it's diameter AC which is 30° inclined to Hp while it makes 45^{0} inclined to Vp. Draw it's projections.

Note the difference in construction of $3^{\text {rd }}$ step in both solutions.

The difference in these two problems is in step 3 only. In problem no. 8 inclination of Tv of that AC is given, It could be drawn directly as shown in $3^{\text {rd }}$ step. While in no. 9 angle of AC itself i.e. it's TL, is given. Hence here angle of $T L$ is taken,locus of c_{1} Is drawn and then LTV I.e. $a_{1} c_{1}$ is marked and final TV was completed.Study illustration carefully.

Read problem and answer following questions

Problem 10: End A of diameter $A B$ of a circle is in HP A nd end B is in VP.Diameter $A B, 50 \mathrm{~mm}$ long is 30° \& 60° inclined to HP \& VP respectively. Draw projections of circle.

1. Surface inclined to which plane? \qquad HP
2. Assumption for initial position? ------// to $\boldsymbol{H P}$
3. So which view will show True shape? --- TV
4. Which diameter horizontal? \qquad AB
Hence begin with TV,draw CIRCLE below X-Y line, taking DIA. AB // to X-Y

The problem is similar to previous problem of circle - no.9.
But in the $3^{\text {rd }}$ step there is one more change.
Like $9^{\text {th }}$ problem True Length inclination of dia.AB is definitely expected
but if you carefully note - the the SUM of it's inclinations with HP \& VP is 90°
Means Line AB lies in a Profile Plane.
So do the construction accordingly AND note the case carefully.

SOLVE SEPARATELY ON DRAWING SHEET GIVING NAMES TO VARIOUS POINTS AS USUAL,
AS THE CASE IS IMPORTANT

Problem 11:
A hexagonal lamina has its one side in HP and Its apposite parallel side is 25 mm above Hp and In Vp. Draw it's projections.
Take side of hexagon 30 mm long.
ONLY CHANGE is the manner in which surface inclination is described:
One side on Hp \& it's opposite side 25 mm above Hp .
Hence redraw $1^{\text {st }} \mathrm{Fv}$ as a $2^{\text {nd }} \mathrm{Fv}$ making above arrangement Keep a'b' on xy \& d'e' 25 mm above xy .

Read problem and answer following questions

1. Surface inclined to which plane? \qquad HP
2. Assumption for initial position? ------ // to HP
3. So which view will show True shape? --- TV
4. Which diameter horizontal? \square $A C$
Hence begin with TV,draw rhombus below X-Y line, taking longer diagonal // to $X-Y$

FREELY SUSPENDED CASES.

IMPORTANT POINTS

Problem 12:

An isosceles triangle of 40 mm long base side, 60 mm long altitude Is freely suspended from one corner of Base side.It's plane is 45° inclined to Vp. Draw it's projections.
1.In this case the plane of the figure always remains perpendicular to Hp. 2.It may remain parallel or inclined to Vp .
3. Hence $T V$ in this case will be always a LINE view.
4.Assuming surface // to Vp, draw true shape in suspended position as FV. (Here keep line joining point of contact \& centroid of fig. vertical) 5.Always begin with FV as a True Shape but in a suspended position. AS shown in $1^{\text {st }} \mathrm{FV}$.

First draw a given triangle
With given dimensions
With given dimensions, Locate it's centroid position

And
join it with point of suspension.

IMPORTANT POINTS

Problem 13
:A semicircle of 100 mm diameter is suspended from a point on its straight edge 30 mm from the midpoint of that edge so that the surface makes an angle of 45° with VP.
Draw its projections.
1.In this case the plane of the figure always remains perpendicular to Hp . 2.It may remain parallel or inclined to Vp .
3. Hence $T V$ in this case will be always a LINE view.
4.Assuming surface // to Vp, draw true shape in suspended position as FV. (Here keep line joining point of contact \& centroid of fig, vertical)
5.Always begin with FV as a True Shape but in a suspended position.

AS shown in $1^{\text {st }} \mathrm{FV}$.

To determine true shape of plane figure when it's projections are given.

WHAT WILL BE THE PROBLEM?

Description of final Fv \& Tv will be given.
You are supposed to determine true shape of that plane figure.

```
Follow the below given steps:
1. Draw the given Fv \& \(\operatorname{Tv}\) as per the given information in problem.
2. Then among all lines of Fv \& Tv select a line showing True Length (T.L.) (It's other view must be // to xy )
3. Draw \(x_{1}-y_{1}\) perpendicular to this line showing T.L.
4. Project view on \(x_{1}-y_{1}\) (it must be a line view)
5. Draw \(\mathrm{x}_{2}-\mathrm{y}_{2} / /\) to this line view \(\&\) project new view on it. It will be the required answer i.e. True Shape.
```

```
The facts you must know:-
If you carefully study and observe the solutions of all previous problems You will find
IF ONE VIEW IS A LINE VIEW \& THAT TOO PARALLEL TO XY LINE, THEN AND THEN IT'S OTHER VIEW WILL SHOW TRUE SHAPE:
```

NOW FINAL VIEWS ARE ALWAYS SOME SHAPE, NOT LINE VIEWS:
SO APPLYING ABOVE METHOD:

WE FIRST CONVERT ONE VIEW IN INCLINED LINE VIEW .(By using x1y1 aux.plane) THEN BY MAKING IT // TO X2-Y2 WE GET TRUE SHAPE.

Problem 14 Tv is a triangle abc. Ab is 50 mm long, angle cab is 300 and angle cba is 650 .
$a^{\prime} b^{\prime} c^{\prime}$ is a $F v$. a^{\prime} is 25 mm , b^{\prime} is 40 mm and c^{\prime} is 10 mm above Hp respectively. Draw projections
of that figure and find it's true shape.

As per the procedure-

1.First draw Fv \& Tv as per the data.

2. In Tv line $a b$ is // to $x y$ hence it's other view $a^{\prime} b$ ' is TL. So draw $x_{1} y_{1}$ perpendicular to it.
3.Project view on x1y1.
a) First draw projectors from $a^{\prime} b^{\prime}$ \& c^{\prime} on $x_{1} y_{1}$.
b) from $x y$ take distances of $a, b \& c(T v)$ mark on these projectors from $x_{1} y_{1}$. Name points a1b1 \& c1.
c) This line view is an Aux.Tv. Draw $x_{2} y_{2} / /$ to this line view and project Aux. Fv on it.
for that from $x_{1} y_{1}$ take distances of a'b' \& c' and mark from $x_{2} y=$ on new projectors.
3. Name points $a^{\prime}{ }_{1} b^{\prime}{ }_{1} \& c^{\prime}{ }_{1}$ and join them. This will be the required true shape.

Problem 15: Fv \& Tv of a triangular plate are shown.
Determine it's true shape.

PROBLEM 16: Fv \& Tv both are circles of 50 mm diameter. Determine true shape of an elliptical plate.

Problem 17 : Draw a regular pentagon of 30 mm sides with one side 30° inclined to $x y$. This figure is Tv of some plane whose Fv is
A line 45^{0} inclined to $x y$.

CHAPTER-11

PROJECTIONS OF SOLIDS

SOLIDS

To understand and remember various solids in this subject properly, those are classified \& arranged in to two major groups.

Group A
Solids having top and base of same shape

Group B
Solids having base of some shape and just a point as a top, called apex.

Pyramids

Triangular Square Pentagonal Hexagonal

SOLIDS
 Dimensional parameters of different solids.

While observing Fv, x-y line represents Horizontal Plane. (Hp)

STEPS TO SOLVE PROBLEMS IN SOLIDS

Problem is solved in three steps:
STEP 1: ASSUME SOLID STANDING ON THE PLANE WITH WHICH IT IS MAKING INCLINATION. (IF IT IS INCLINED TO HP, ASSUME IT STANDING ON HP)
(IF IT IS INCLINED TO VP, ASSUME IT STANDING ON VP)
IF STANDING ON HP - IT'S TV WILL BE TRUE SHAPE OF IT'S BASE OR TOP: IF STANDING ON VP - IT'S FV WILL BE TRUE SHAPE OF IT'S BASE OR TOP. BEGIN WITH THIS VIEW:
IT'S OTHER VIEW WILL BE A RECTANGLE (IF SOLID IS IT'S OTHER VIEW WILL BE A TRIANGLE (IF SOLID IS CONE OR ONE OF THE PYRAMIDS): DRAW FV \& TV OF THAT SOLID IN STANDING POSITION:
STEP 2: CONSIDERING SOLID'S INCLINATION (AXIS POSITION) DRAW IT'S FV \& TV.
STEP 3: IN LAST STEP, CONSIDERING REMAINING INCLINATION, DRAW IT'S FINAL FV \& TV.

GENERAL PATTERN (THREE STEPS) OF SOLUTION:

CATEGORIES OF ILLUSTRATED PROBLEMS!

```
PROBLEM NO.1, 2, 3, 4
GENERAL CASES OF SOLIDS INCLINED TO HP & VP
PROBLEM NO. 5 \& 6
PROBLEM NO. }
PROBLEM NO. }
PROBLEM NO. }
PROBLEM NO. }10\mathrm{ & }1
PROBLEM NO. }1
```


Problem 1. A square pyramid, 40 mm base sides and axis 60 mm long, has a triangular face on the ground and the vertical plane containing the axis makes an angle of 45° with the VP. Draw its projections. Take apex nearer to VP

Solution Steps :

Triangular face on Hp , means it is lying on Hp : 1.Assume it standing on Hp .
2.It's Tv will show True Shape of base(square)
3.Draw square of 40 mm sides with one side vertical Tv \&
taking 50 mm axis project Fv. (a triangle)
4. Name all points as shown in illustration.
5.Draw $2^{\text {nd }}$ Fv in lying position I.e.o'c'd' face on $x y$. And project it's Tv. 6.Make visible lines dark and hidden dotted, as per the procedure.
7. Then construct remaining inclination with Vp
($V p$ containing axis ic the center line of $2^{\text {nd }} T v$.Make it 45° to $x y$ as shown take apex near to $x y$, as it is nearer to $V p$) \& project final Fv.

3. Select nearest point to observer and draw all lines starting from it-dark.
4. Select farthest point to observer and draw all lines (remaining)from it- dotted.

Q Draw the projections of a pentagonal prism, base 25 mm side and axis 50 mm long, resting on one of its rectangular faces on the H.P. with the axis inclined at 450 to the V.P.
As the axis is to be inclined with the VP, in the first view it must be kept perpendicular to the VP i.e. true shape of the base will be drawn in the FV with one side on XY line

Problem 2:

A cone 40 mm diameter and 50 mm axis is resting on one generator on Hp which makes 30^{0} inclination with Vp
Draw it's projections.
For dark and dotted lines
1.Draw proper outline of new vie DARK.
2. Decide direction of an observer.
3. Select nearest point to observer and draw all lines starting from it-dark.
4. Select farthest point to observer and draw all lines (remaining) from it- dotted.

Solution Steps:

Resting on Hp on one generator, means lying on Hp :
1.Assume it standing on Hp .
2.It's Tv will show True Shape of base(circle)
3.Draw 40 mm dia. Circle as Tv \&
taking 50 mm axis project Fv. (a triangle)
4. Name all points as shown in illustration.
5.Draw $2^{\text {nd }} \mathrm{Fv}$ in lying position I.e.o'e' on xy . And project it's Tv below xy.
6. Make visible lines dark and hidden dotted,
as per the procedure.
7. Then construct remaining inclination with Vp (generator $\mathrm{o}_{1} \mathrm{e}_{1} 30^{\circ}$ to xy as shown) \& project final Fv.

Problem 3:

A cylinder 40 mm diameter and 50 mm axis is resting on one point of a base circle on Vp while it's axis makes 45° with Vp and Fv of the axis 35° with Hp
Draw projections..

Solution Steps:

Resting on V p on one point of base, means inclined to $V p$:
1.Assume it standing on Vp
2.It's Fv will show True Shape of base \& top(circle)
3. Draw 40 mm dia. Circle as Fv \& taking 50 mm axis project Tv. (a Rectangle)
4. Name all points as shown in illustration.
5.Draw $2^{\text {nd }}$ Tv making axis 45° to xy And project it's Fv above xy.
6. Make visible lines dark and hidden dotted, as per the procedure.
7.Then construct remaining inclination with Hp
($F v$ of axis I.e. center line of view to $x y$ as shown) \& project final Tv.

Problem 4:A square pyramid 30 mm base side and 50 mm long axis is resting on it's apex on Hp, such that it's one slant edge is vertical and a triangular face through it is perpendicular to Vp. Draw it's projections.

Solution Steps :

1.Assume it standing on Hp but as said on apex.(inverted). 2.lt's Tv will show True Shape of base(square)
3.Draw a corner case square of 30 mm sides as Tv (as shown)

Showing all slant edges dotted, as those will not be visible from top. 4.taking 50 mm axis project Fv . (a triangle)
5.Name all points as shown in illustration.
6. Draw $2^{\text {nd }}$ Fv keeping o'a' slant edge vertical \& project it's Tv
7.Make visible lines dark and hidden dotted, as per the procedure.
8. Then redrew $2^{\text {nd }} \mathrm{Tv}$ as final Tv keeping $\mathrm{a}_{1} \mathrm{o}_{1} \mathrm{~d}_{1}$ triangular face
perpendicular to V p I.e.xy. Then as usual project final Fv .

Problem 5: A cube of 50 mm long edges is so placed on Hp on one corner that a body diagonal is parallel to Hp and perpendicular to Vp Draw it's projections.

Solution Steps:

1.Assuming standing on Hp , begin with Tv , a square with all sides equally inclined to $x y$.Project $F v$ and name all points of FV \& TV.
2. Draw a body-diagonal joining c' with 3^{\prime} (This can become // to xy)
3.From 1' drop a perpendicular on this and name it p '
4.Draw $2^{\text {nd }} \mathrm{Fv}$ in which $1^{\prime}-\mathrm{p}$ ' line is vertical means $\mathrm{c}^{\prime}-3^{\prime}$ diagonal must be horizontal. .Now as usual project Tv..
6.In final Tv draw same diagonal is perpendicular to Vp as said in problem.

Then as usual project final FV.

Problem 6:A tetrahedron of 50 mm long edges is resting on one edge on Hp while one triangular face containing this edge is vertical and 45° inclined to Vp. Draw projections.

IMPORTANT:

Tetrahedron is a special type of triangular pyramid in which base sides \& slant edges are equal in length. Solid of four faces. Like cube it is also described by One dimension only. Axis length generally not given.

Solution Steps

As it is resting assume it standing on Hp.
Begin with Tv, an equilateral triangle as side case as shown: First project base points of Fv on xy , name those $\&$ axis line. From a' with TL of edge, $\mathbf{5 0} \mathbf{~ m m}$, cut on axis line \& mark o' (as axis is not known, 0 ' is finalized by slant edge length)
Then complete Fv .
In $2^{\text {nd }} \mathbf{F v}$ make face $o^{\prime}{ }^{\prime}{ }^{\prime} \mathbf{c}^{\prime}$ vertical as said in problem.
And like all previous problems solve completely.
\longrightarrow

FREELY SUSPENDED SOLIDS:

Positions of CG, on axis, from base, for different solids are shown below.

Problem 7: A pentagonal pyramid 30 mm base sides $\& 60 \mathrm{~mm}$ long axis, is freely suspended from one corner of base so that a plane containing it's axis remains parallel to Vp .
Draw it's three views.

Solution Steps:

In all suspended cases axis shows inclination with Hp .
1.Hence assuming it standing on Hp, drew Tv - a regular pentagon, corner case. 2.Project Fv \& locate CG position on axis - ($1 / 4 \mathrm{H}$ from base.) and name g ' and Join it with corner d’
3.As $2^{\text {nd }} \mathrm{Fv}$, redraw first keeping line $g^{\prime} d^{\prime}$ vertical.
4.As usual project corresponding Tv and then Side View looking from.

IMPORTANT:
When a solid is freely suspended from a corner, then line joining point of contact \& C.G. remains vertical. (Here axis shows inclination with Hp.) So in all such cases, assume solid standing on Hp initially.)

Solution Steps:

1.Assuming it standing on Hp begin with Tv , a square of corner case. 2. Project corresponding Fv.\& name all points as usual in both views. 3.Join a'1' as body diagonal and draw $2^{\text {nd }} \mathrm{Fv}$ making it vertical (I' on xy) 4.Project it's Tv drawing dark and dotted lines as per the procedure.

5.With standard method construct Left-hand side view.

(Draw a 45^{0} inclined Line in Tv region (below xy). Project horizontally all points of Tv on this line and reflect vertically upward, above xy.After this, draw horizontal lines, from all points of Fv , to meet these lines. Name points of intersections and join properly. For dark \& dotted lines

Problem 9: A right circular cone, 40 mm base diameter and 60 mm long axis is resting on Hp on one point of base circle such that it's axis makes 45° inclination with Hp and 40° inclination with Vp . Draw it's projections.

This case resembles to problem no.7 \& 9 from projections of planes topic. In previous all cases $2^{\text {nd }}$ inclination was done by a parameter not showing TL.Like Tv of axis is inclined to Vp etc. But here it is clearly said that the axis is 40° inclined to Vp. Means here TL inclination is expected. So the same construction done in those Problems is done here also. See carefully the final Tv and inclination taken there.

So assuming it standing on HP begin as usual.

Problem 11:A hexagonal prism of

 base side 30 mm longand axis 40 mm long, is standing on Hp on it's base with one base edge // to Vp.A tetrahedron is placed centrally on the top of it.The base of tetrahedron is a triangle formed by joining alternate corners of top of prism..Draw projections of both solids. Project an auxiliary Tv on AIP 45° inclined to Hp

STEPS:

Draw a regular hexagon as Tv of standing prism With one side // to xy and name the top points.Project it's Fv a rectangle and name it's top. Now join it's alternate corners a-c-e and the triangle formed is base of a tetrahedron as said.
Locate center of this triangle \& locate apex $\underline{0}$
Extending it's axis line upward mark apex o'
By cutting TL of edge of tetrahedron equal to a-c. and complete Fv of tetrahedron.
Draw an AIP (xly1) 45^{0} inclined to xy And project Aux.Tv on it by using similar Steps like previous problem.

Problem 12: A frustum of regular hexagonal pyrami is standing on it's larger base On Hp with one base side perpendicular to Vp.Draw it's Fv \& Tv.
Project it's Aux.Tv on an AIP parallel to one of the slant edges showing TL.
Base side is 50 mm long, top side is 30 mm long and 50 mm is height of frustum.

The vertical plane containing the slant edge on the HP and the axis is seen in the TV as $\mathrm{O}_{1} \mathrm{~d}_{1}$ for drawing auxiliary FV draw an auxiliary plane $\mathrm{X}_{1} \mathrm{Y}_{1}$ at 45 o from $\mathrm{d}_{1} \mathrm{O}_{1}$ extended. Then draw projectors from each point i.e. a_{1} to f_{1} perpendicular to $X_{1} Y_{1}$ and mark the points measuring their distances in the FV from old XY line.
Q..: A hexagonal pyramid base $\mathbf{2 5 m m}$ side and axis 55 mm long has one of its slant edge on the ground. A plane containing that edge and the axis is perpendicular to the H.P. and inclined at 450 to the V.P. Draw its projections when the apex is nearer to the V.P. than the base.

The inclination of the axis is given indirectly in this problem. When the slant edge of a pyramid rests on the HP its axis is inclined with the HP so while deciding first view the axis of the solid must be kept perpendicular to HP i.e. true shape of the base will be seen in the TV. Secondly when drawing hexagon in the TV we have to keep the corners at the extreme ends.

CHAPTER-12

ISOMETRIC

PROJECTIONS

ISOMETRIC DRAWING IT IS A TYPE OF PICTORIAL PROJECTION IN WHICH ALL THREE DIMENSIONS OF an obiect are shown in one view and IF REQUIRED, THEIR ACTUAL SIZES CAN BE MEASURED DIRECTLY FROM IT.	TYPICAL CONDITION. IN THIS 3-D DRAWING OF AN ObJECT, all three dimensional axes are mentained at equal inclinations WITH EACH OTHER. (1200)
3-D DRAWINGS CAN BE DRAWN IN NUMEROUS WAYS AS SHOWN BELOW ALL THESE DRAWINGS MAY BE CALLED 3-DIMENSIONAL DRAWINGS, OR PHOTOGRAPHIC OR PICTORIAL DRAWINGS. HERE NO SPECIFIC RELATION AMONG H, L \& D AXES IS MENTAINED.	NOW OBSERVE BELOW GIVEN DRAWINGS. ONE CAN NOTE SPECIFIC INCLINATION AMONG H, L \& D AXES. ISO MEANS SAME, SIMILAR OR EQUAL. HERE ONE CAN FIND EDUAL INCLINATION AMONG H, L \& D AXES. EACH IS $12 \mathbf{0}^{\circ}$ INCLINED WITH OTHER TWO. HENCE IT IS CALLED ISOMETRIC DRAWING L

ISOMETRIC AXES, LINES AND PLANES:

The three lines $A L, A D$ and $A H$, meeting at point A and making 120^{0} angles with each other are termed Isometric Axes.

The lines parallel to these axes are called Isometric Lines.

The planes representing the faces of of the cube as well as other planes parallel to these planes are called Isometric Planes.

ISOMETRIC SCALE:

When one holds the object in such a way that all three dimensions are visible then in the process all dimensions become proportionally inclined to observer's eye sight and hence appear apparent in lengths.

This reduction is 0.815 or 9 / 11 (approx.) It forms a reducing scale which Is used to draw isometric drawings and is called Isometric scale.

In practice, while drawing isometric projection, it is necessary to convert true lengths into isometric lengths for measuring and marking the sizes. This is conveniently done by constructing an isometric scale as described on next page.

(1) | ISOMETRIC |
| :---: |
| OF |

PLANE FIGURES

DRAW ISOMETRIC VIEW OF A CIRCLE IF IT IS A TV OR FV.

FIRST ENCLOSE IT IN A SQUARE. IT'S ISOMETRIC IS A RHOMBUS WITH D \& L AXES FOR TOP VIEW.
THEN USE H \& L AXES FOR ISOMETRIC WHEN IT IS FRONT VIEW.
FOR CONSTRUCTION USE RHOMBUS
METHOD SHOWN HERE. STUDY IT.

3

DRAW ISOMETRIC VIEW OF THE FIGURE SHOWN WITH DIMENTIONS (ON RIGHT SIDE) CONSIDERING IT FIRST AS F.V. AND THEN T.V.

ISOMETRIC VIEW OF PENTAGONAL PYRAMID STANDING ON H.P.
 (Height is added from center of pentagon)

ISOMETRIC VIEW OF BASE OF PENTAGONAL PYRAMID

STANDING ON H.P.

ISOMETRIC VIEW OF ISOMETRIC VIEW OF
PENTAGONALL PRISM
LYING ON H.P.

(7)

CYLINDER STANDING ON H.P.

CYLINDER LYING ON H.P.

HALF CYLINDER

STANDING ON H.P.
(ON IT'S SEMICIRCULAR BASE)

HALF CYLINDER
LYING ON H.P.
(with flat face // to H.P.)

ISOMETRIC VIEW OF

9

FRUSTOM OF SQUARE PYRAMID

STANDING ON H.P. ON IT'S LARGER BASE.

PROJECTIONS OF FRUSTOM OF PENTAGONAL PYRAMID ARE GIVEN. DRAW IT'S ISOMETRIC VIEW.

ISOMETRIC VIEW
OF
FRUSTOM OF PENTAGONAL PYRAMID

ON H.P. ON IT'S LARGER BASE.

PROBLEM: A SQUARE PYRAMID OF 30 MM BASE SIDES AND
50 MM LONG AXIS, IS CENTRALLY PLACED ON THE TOP OF A CUBE OF 50 MM LONG EDGES.DRAW ISOMETRIC VIEW OF THE PAIR.

PROBLEM: A TRIANGULAR PYRAMID OF 30 MM BASE SIDES AND 50 MM LONG AXIS, IS CENTRALLY PLACED ON THE TOP OF A CUBE OF 50 MM LONG EDGES.
DRAW ISOMETRIC VIEW OF THE PAIR.

SOLUTION HINTS.
TO DRAW ISOMETRIC OF A CUBE IS SIMPLE. DRAW IT AS USUAL.

> BUT FOR PYRAMID AS IT'S BASE IS AN EQUILATERAL TRIANGLE,
> IT CAN NOT BE DRAWN DIRECTLY.SUPPORT OF IT'S TV IS REQUIRED.

SO DRAW TRIANGLE AS A TV, SEPARATELY AND NAME VARIOUS POINTS AS SHOWN.
AFTER THIS PLACE IT ON THE TOP OF CUBE AS SHOWN.
THEN ADD HEIGHT FROM IT'S CENTER AND COMPLETE IT'S ISOMETRIC AS SHOWN.

PROBLEM:
A SQUARE PLATE IS PIERCED THROUGH CENTRALLY
BY A CYLINDER WHICH COMES OUT EQUALLY FROM BOTH FACES
OF PLATE. IT’S FV \& TV ARE SHOWN. DRAW ISOMETRIC VIEW.

F.V. \& T.V. of an object are given. Draw it's isometric view.

PROBLEM:
A HEMI-SPHERE IS CENTRALLY PLACED
ON THE TOP OF A FRUSTOM OF CONE.
DRAW ISOMETRIC PROJECTIONS OF THE ASSEMBLY.

FIRST CONSTRUCT ISOMETRIC SCALE. USE THIS SCALE FOR ALL DIMENSIONS IN THIS PROBLEM.
 IS CUT BY AN INCLINED SECTION PLANE THROUGH THE MID POINT OF AXIS AS SHOWN.DRAW ISOMETRIC VIEW OF SECTION OF PYRAMID.

F.V. \& T.V. of an object are given. Draw it's isometric view.

STUDY
 ILLUSTRATIONS

ALL VIEWS IDENTICAL

F.V. \& T.V. and S.V.of an object are given. Draw it's isometric view.

ORTHOGRAPHIC PROJECTIONS

TV

THANK YOU

