Excitation Control System & Dynamic Brake)

S.K.Sinha/CI(DSL)

OBJECTIVE: Excitation System

- What is Electrical Transmission
- Voltage & Current limit
- constant power transmission
- Excitation Control System
- Main Components: Exciter Gen, Control Panel, Magnetic Amplifier
- Basic E -Type Excitation control System

ELECTRICAL POWER TRANSMISSION -BASIC REQUREMENTS

- Voltage & Current be under limitations.
- Power transmission be constant

BASIC REQUIREMENTS-VOLTAGE & CURRENT LIMITS

- Very high voltage causes insulation break down., Flash over etc.
- Very large Current causes burnt circuits, fire etc.

BASIC REQUIREMENTS-CONSTANT POWER TRANSMISSION

- >maximum voltage limit
- > maximum current limit
- Constant power transmission

A TYPICAL GENERATOR LOAD CURVE (FOR 8th NOTCH)-WITH EXCITATION SYSTEM

- ► OA \rightarrow IR line
 - (when the train is not moving)
- ▶ AB \rightarrow the current limit of the Gen.
- \blacktriangleright BC \rightarrow constant rated engine HP
- Dotted lines -System tolerance (2.1/2%)
- ► CD \rightarrow Voltage limit

FAMILY OF NOTCH CURVES 1st Notch through 8th Notch

Electronics Excitation System-Main Components

- Exciter Generator
- Excitation Control Panel
- Magnetic Amplifiers

EXCITER GENERATOR

- A 4-Pole separately excited d-c Generator
- Mounted on the Tr.Gen/Alt. gear box
- Driven by the bull gear
- Specially designed to excite the field of the Main Gen./Alternator

Photo 4 . Traction Generator & Auxiliary Generator

Handbook on Diesel locomotive

January 2002

Excitation Control Panel

- A steel fabricated housing
- Mounted on seven plug in type cards

Magnetic Amplifiers

Uses Reactors namely,

- 1. Armature Current Control Reactor(ACCR)
- 2. Voltage Control Reactor(VCR)
- 3. Pulse With Modulator (PWM)
- Magnetic Amplifiers input AC signals comes from Oscillator Card

ARMATURE CURRENT CONTROL REACTOR(ACCR)

- Alarge bus bar with 02 cores connected in series with the Main Gen.for measuring DC current indirectly.
- Produces ac signal proportional to dc input
- The reactor is calibrated and the complete magnetic structure is sealed in epoxy.

VOLTAGE CONTROL REACTOR(ACCR

- Mounted in Excitation panel
- Produces ac signal proportional to dc input
- Measures voltage indirectly
- The reactor is calibrated and the complete magnetic structure is sealed in epoxy

PULSE WIDTH MODULATOR (PWM) A small self-saturating

- A small self-saturating reactor with five dc. control windings and two ac. windings
- Mounted in excitation panel & fed by oscillator
- Control On/Off period of power transistor in switching mode

PULSE WIDTH MODULATOR (PWM)

- Five d.c. Windings for feedback control -
- 1.Exciter suicide and stabilization winding
- 2. Main excitation control winding
- 3. Wheel slip power reduction winding
- 4. Dynamic braking stabilization
- 5. Dynamic braking antinegative control

PULSE WIDTH MODULATOR (PWM)

BASIC E-TYPE EXCITATION SYTEM

- Main Gen./Alt. excited by Exciter Gen. Current
- Exciter Gen. excited by Battery/Aux. Gen Current
- Batt./Aux. Gen. current controlled by a power transistor(EFT) in switching mode

BASIC E-TYPE EXCITATION SYTEM

- Power Transistor gets pulses from Oscillator Card and gets 800 times turns ON & OFF in 1 sec.
- ON & OFF period is controlled by different feedback dc signals on PWM card
- OFF-period reduces excitation of Main Gen.

CREATION OF VOLTAGE & CURRENT LIMITS

- Greater of the signals proportional to M/Gen current and M/Gen Voltage are compared with the speed ref. signal in the Mixer Card.
- Speed ref. signal preset as voltage /Current limit at the given speed
- If the strength of voltage/current signal exceeds a signal will go to PWM .
- Main Gen. Voltage / current reduce and reaches under limits.

BASIC E-TYPE EXCITATION SYSTEM -BLOCK DIAGRAMME

BASIC E-TYPE EXCITATION SYTEM

- Power Transistor gets pulses from Oscillator Card and gets 800 times turns ON & OFF in 1 sec.
- ON & OFF period is controlled by different feedback dc signals on PWM card
- OFF-period reduces excitation of Main Gen.

CREATION OF APPROX. CONSTANT POWER TRANSMISSION(AT 8TH NOTCH)

- Function Gen. allows 3 different current in descending order at different Gen.voltages through 1740 Turn DC winding of ACCR.
- ACCR gives signals to Mixer card accordingly
- Current also reduces in descending order.
 - Slope of the Load curve increases

(At C high current at D less current and at D least current passes through 1740 T of

CORNER POINT SUPRESSION

V

V3

V7

V3

<u>V2</u>

V1

- At lower notches also , slope changes at V1,V2 &V3 voltages
- Creates crowding of curves.
- Suppression circuit inside Function Gen. operates
- Changes the slope at less voltages V1',V2'andV3' than higher notch voltage
- Creates separate and better notch curves

OBJECTIVE: Dynamic Brake System

- Dynamic Brake system :Advantages
- DC motor into a dc generator
- Different auxiliary systems associated with Dynamic Brake
- Distribution of armature and field currents of all six TMs during the application of DB..
- Explain Braking Torque, efforts and characteristics?
- Dynamic Brake operation
- Dynamic Brake Relays and BKCP

DYNAMIC BRAKE -INTRODUCTION

- An auxiliary brake
- Not effective at low & high speeds
- When applied TMs-
- 1. Converted into Generators
- 2. Gives supply to Grids & Blower Motors

DYNAMIC BRAKE INTRODUCTION

► GRIDS & BLOWER MOTOR

Grids

Dynamic Brake Blower Motor

CONVERSION OF TM (DC MOTOR) INTO GEN.(DC GENERATOR)

- Conversion is possible because both have
- Same construction
- Same design
- Same components

CONVERSION OF TM INTO GEN DURING

Operation Brake Dynamic Switching Operation during

- Opposite to rotation of TMs
- > Depends on field current & rotor speed (T $\alpha \ I_{\phi} \omega)$
- I_φ More M/Gen. voltage more field current
- $\blacktriangleright \omega$ More loco speed ,more rotor speed

Direction

- Opposite to rotation of TMs

Dependency

- rotor speed & Field current

Limitation

- Torque increases, Armature voltage & Current also rises to danger mark.

UP TO 35/40 KM -Speed increases ,

> TM armature voltage/current increases,

> Braking Torque increases

BEYOND 35/40 KM-

Speed increases

- Main gen. excitation decreases by VCR of Ex. Control System
- TM armature voltage/current decreases

BRAKING EFFORT & CHARACTERISTICS

MOTOR ARMATURE CURRENT

LOCOMOTIVE SPEED

DYNAMIC BRAKING TRACTION MOTOR CHARATERISTICS

DYNAMIC BRAKE APPLICATION Causes-

- 1. BKT switch operation
- Braking relays (BKR1,BK2 & BKR3) operation
- 1. BKCP set up.

1.BKT SWITCH OPERATION

Brings -

- Fields into series across the M/Gen
- Armatures into different pairs cut off from Main Gen.
- Grids & BKBL into Armature Circuit

BKT SWITCH -COMBINATION OF CONTACTORS

LOCATED BELOW POWER CONTACTORS ON FRONT PANEL

2.BRAKING RELAYS OPERATION

Modifies-

Engine speed setting -4th notch speed at IDLE

Excitation Control System

-Speed ref. signal to mixer card replaced by braking control signal

CIRCUIT OPERATION-I

Simplified Diagram for Dynamic Brake Operation

CIRCUIT OPERATION-II

Power Circuit

Actual Circuit

3.BRAKING CONTROL POTENTIOMETER (BKCP) SETUP

BKCP-

- > A variable rotatory resistance
- Fitted in the bottom of the control stand
- Rotate with SH movement
- Controls braking control signal
- Bring down Main Gen. voltage from 1.8 V to 30V

AUXILIARY SYSTEMS

- Grid Cooling
 - By Blower Motor

Traction Motor Cooling -By FTTM & RTTM Blowers, rotate proportional to Engine speed.

DYNAMIC BRAKE -ADVANTAGE

Smooth & continuous control

DYNAMIC BRAKE OPERATION TH to IDLE RH to forward or backward

- SH to Dyn. Braking mode
 - (from 'off' to Big 'D' to Small 'D')

TRAIN BRAKING WITH DYNAMIC BRAKE

- Dynamic brake circuit include Dynamic brake interlock magnet valve(BKIV)
- BKIV is a part of loco air brake
- When applied dynamic brake the loco air brake will not work

THANKS