

FAILURE CASE STUDY ON TLAC SYSTEM IN LHB

By K. S. Jha CI/Electrical/IRIMEE

FAILURES IN AC COACHES

- AC less cooling
- Supply failure (750 V/415 V/ 110 Vdc)
- Passenger amenity items

Reasons for AC less cooling

- > Leakage in system
- > Chocking
- > HP rise
- > Compressor reverse rotation
- > Compressor internal trip
- > Low pressure
- > Air loss
- > CPU defective

Reasons for supply failure (750/415/DC)

- Single phasing
- HOG/EOG supply
- Wratchet/ZS coupler/Junction box
- RBC/EBC/monoblock batteries
- 60 kVA Transformer
- D&E Device
- Fuses and switchrears

Failure of passenger amenity items

- Reading lights
- Mobile/laptop charging points
- Lights
- Water Pumps

Leakage (less cooling)

- Suction/Discharge (Low side/High side)
- REASON OF LEAKAGES IN RMPU
- Unusual / heavy vibrations in RMPU
- Fixing of RMPU equipments
- Design problems
- Poor quality of material
- Poor workmanship

Leakage (less cooling)

0	LOCATION OF LEAKAGES IN LHB AC UNIT Discharge Line
	Condenser Coil
	Liquid Line
	Strainer cum Capillary / Expansion Valve
	Evaporator Coil
	Suction Line
	Charging Valve (Hand Shut Off Valve / Schrader Valve)
	HP / LP Cut Out

Discharge line

Discharge line leakage video

Deadnut valve Discharge line

CONDENSER COIL

Condenser coil

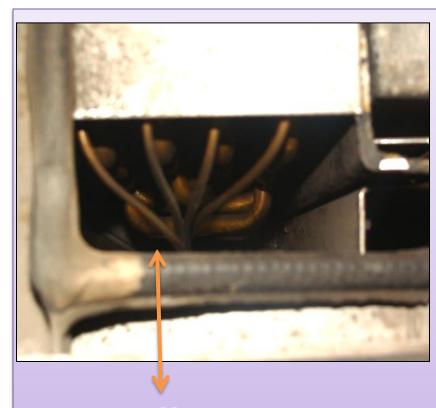
Video of leakage testing

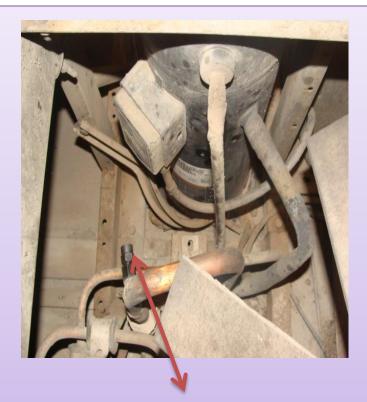
Suction line leakage

Suction line

Liquid line

Liquid line sight glass


Evaporator (Cooling)coil leakage



153160 CP 2.2

capillary

capillary

Gas charging valve

COMPRESSOR leakage

1. Compressor base leak

- 2. Compressor Jam
- 3. Compressor open circuit 6. poor efficiency
- 4. Compressor short circuit

- 5. compressor internal trip

Attention on following points during repair of leakage cases

Maintenance Supervisor will be present there personally and examine that the repairing work has been carried out perfectly.
To attend the leakage cases, depot should have all the requisite tools and plants, machinery, spares, like - Gas welding set, Copper pipes of different size, Brazing rod, etc.
Maintenance team should also find the root cause of leakage and maintain the records properly after analyze the case.
Smooth, equal & bubbles free brazing should be done on joints to avoid recurrence of such failure.
After carried out the brazing work, AC unit must be examined by going through pressure test with Nitrogen & vacuum test and then charge refrigerant with adequate quantity in the AC unit.

Air loss

1. Duct worn/torn out

163155 PP side Supply air

99153 NPP side Supply air

Air loss

2. Duct shifting

Water dropping

Water dropping video

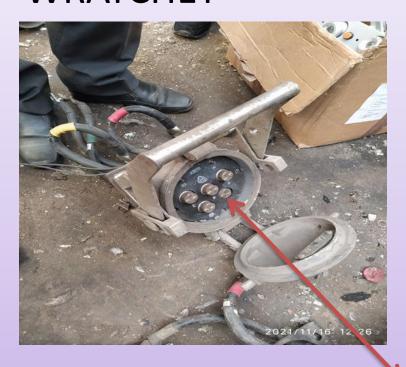
Water dropping

DUCT (VIDEO)

2. TRUFF (VIDEO)

1. ZS coupler

OVERHEATING MARK


WRATCHET

OVERHEATED

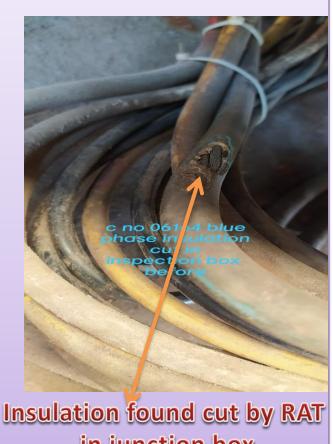
WRATCHET

GOTI PRESSED INSIDE

Harting connector

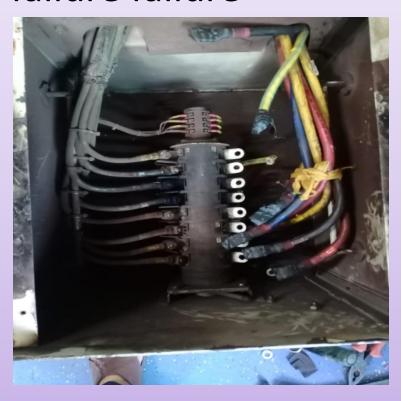
SHORT due to ingress of rain water

OK CONDITON



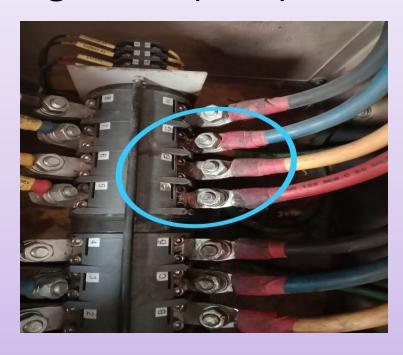
PU selant provided

Feeder fault in junction box

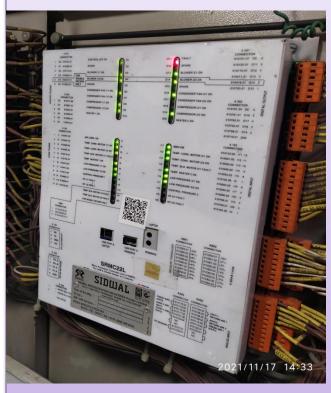


INSPECTION BOX under AC panel

in junction box


Disconnecting and Earthing device(D&E) failure failure

Disconnecting and Earthing device(D&E)


• 60 Kva Transformer

Overheating mark

• CPU

AC PANEL

AC ON/OFF Rotary

MCB 35 NO

DIGITAL DISPLAY

FAULT LAMP

- As microprocessor (CPU) controls both ac unit of coach.
 Therefore, any defect of CPU will result in CNAC/less cooling.
- Some common points to be checked before starting AC unit are as under:
- 1. Sensors (01 HYGROSTAT, 02 Fresh air, 02 return air & 02 supply air) play important role in working of CPU
- It is required to monitor cleaning/testing their health as per schedule (every D2 Schedule)
- 3. Ensure 35 no MCB is switched ON
- 4. Ensure 110 V DC supply in controller
- 5. Ensure AC ON/OFF switch (U4S1) provided on AC panel is kept ON.

6. 6. Ensure that fault indication lamp is not glowing.

Fault indication lamp

- 7. Ensure always that the following three indication on CPU are glowing:
- □ controller OK
- ☐ AIR-CON. ON
- □ 400 V OK

- 8. Some other points to know:
- > the microprocessor shall shut down the AC unit in the following conditions:
- a) If supply air temp goes below 5 °C
- b) If supply air temp goes above 85 °C
- ➤ Both compressors shall not start at a time. First compressor of each unit will start after 30 seconds from switching ON of air condition switch and second compressor will start after a delay of 5 second.
- Once compressor has been switched off, it will not be started before 5 second even it is required.

- ➤ Equipment will be blocked permanently if it is tripped thrice in a hour.
- > If all temp sensors are defective, heating mode should not work.
- > EMERGENCY MODE:
- In this mode, both blower and exaust fan will work (if the refrigeration circuit failed for any reason and malfunction with the controller

> Dehumidification mode:

this mode will start, if relative humidity is above 60% and RT is below set point. One compressor, one condenser & one heater will be ON. Heater will be switched OFF after 3 minutes and will remain OFF for further 5 minutes. After 5 minutes, cycle will be repeated till relative humidity is reached upto 60%.

No water

- Water pump defective
- Pipe line chock
- No water from tank
- No water in tank

