HIGH SPEED RAIL

The Big Picture

Shashwat Gupta AP/WMT/IRIMEE

FIRST THINGS FIRST...

- I am no expert! Just a lot of reading and some personal experiences
- High Speed Rail (HSR) encompasses decades of scholarship, and no one session by even a panel of experts can sufficiently capture any facet of its complexity
- The aim of this session is to sharpen your curiosity and increase interest in HSR

When you're testing to see how deep water is, never use two feet.

WHY DO WE TALK SO MUCH ABOUT HSR?

- The *development* of HSR globally has *followed many different paths*, greatly influenced by prevailing geopolitical/socio-political and economic considerations
- HSR is invariably a highly capital intensive enterprise that entails a lot of complexities in its planning, design, construction, operation and maintenance works, and with far-reaching socioeconomic implications (megaproject)
- HSR is one of the *fastest growing* rail transport sectors in the world today, and is set to attract even more attention over the next decade

WHAT IS HSR?

- Grounded, guided, low-grip transport system (UIC 2018)
- Speed > 200 kmph using: tracks, rolling stock, signalling, operation control centres
 (lines may be exclusively dedicated or mixed, but freight generally kept separate)
- Combination of several infrastructural elements forming a single integrated system
- Railway subsystem consistent with various global HSR standards
- Feasibility criteria: Interoperability, high capacity, safety & security, sustainability

HISTORY OF HSR DEVELOPMENT

35 000

30 000

- > 1964: Tokaido Shinkansen, Japan
 Tokyo Osaka (515 km) line @ 210 kmph

 1979: Direttissima Line Italy
 - > **1978**: *Direttissima* Line, Italy Rome Florence (254 km) @ 200 kmph
- > **1981**: TGV Service, France
 Paris Lyon (450 km) @ 260 kmph

 10 000
- > **1991**: InterCity Express (ICE), Germany
 Hannover Würzburg (327 km) @ 280 kmph
- 2003: Qinshen railway, China
 Qinhuangdao Shenyang (404 km) @ 200 kmph

BENEFITS OF HIGH SPEED RAIL

- Economic impact
 - ➤ Huge **capital** outlay
 - > **Investment** in the new market
- Quality of life
 - > Scalable, safe, convenient
- Technological competitiveness
- **Strategic** importance
 - > Territory integration
- Environmental Sustainability

DEVELOPMENTAL FEATURES: INFRASTRUCTURE

- Land purchase remains a significant difficulty for infrastructure development in Asia. Japan has used land trust schemes through a trust bank, but not yet others
- Pre-feasibility and feasibility studies are important to bolster the design stage
- Most lines take 5-6 years to build after taking possession of land, provided tunnels
 and viaducts are not numerous and long
- Other considerations include:
 - Dedicated or mixed traffic?
 - Ballasted or ballast-less (slab) track?
 - Superstructure: Turnouts, signals, electric

ROLLING STOCK: TECHNICAL CONSIDERATIONS

- Interoperability of gauge (NG to BG) and electric (traction) system (varies from 0.75V DC to 25 kV AC or non-electric). Technical Specifications for Interoperability (TSI) are compulsory in Europe for both infrastructure and rolling stock
- Maintenance generally organized as a 4- or 5- level process to fit both the commercial usage schedule and the rolling stock life cycle
- RAMS (Reliability, Availability, Maintenance, Safety)
- Control circuits & software (including in-cab signalling, GTO/IGBT, braking system)

ROLLING STOCK: TECHNICAL CONSIDERATIONS

- Articulated vs non-articulated length limited by bogies but higher stability
- Aerodynamic Profiles depending upon the navigation terrain/topology, EN14067
- Tilting Trains (Pneumatic vs Hydraulic Tilt) to navigate curves at speed
- Pressure Comfort criteria (Air Leakage) Pressurised cabins during run
- Ride Index (Vibrations; Ride Comfort) keep as low as possible
- Noise or Boom (e.g. when passing through tunnels) rms weighted avg & peak min
- Technical Compatibility Standard: UIC 660

ARTICULATED VS NON-ARTICULATED TRAINS

Qualitative comparison of the characteristics of articulated and non-articulated trains and their effects on impact, Xue et al,

© Shashwat Gupta AP/WMT/IRIMEE/JMP

Proc. IMechE Vol. 225 Part F: J. Rail and Rapid Transit, Jan 2011, Pg 24-37

HSR ROLLING STOCK FLEET

Major players in the West (Europe & Canada)

SIEMENS To

Major player in Asia (China)

Split by country of the world Rolling stock fleet (2017)

UIC, 2018, "High Speed Rail"

MAJOR SHINKANSEN SUPPLIERS' MARKET SHARE

EMERGING TECHNOLOGIES: AI & ML

- Image recognition
- Chatbots & Virtual Assistants
- Sales Prediction through ML
- Station Staff & Cleaning Crew
- Warehouses
- Predictive Maintenance of Rolling Stock & Infra
- Automatic Train Operation (ATO)

"Artificial Intelligence Case of the Railway Sector", UIC Rail System Dept, UIC, March 2021,

EUROPEAN YR of RAIL '21

- Online ticket booking for international rail travel
- European Strategy on Al and Data 2020
- Double passenger and freight traffic by
 2030
- Shift2Rail
- Mobility as a Service (MaaS)
- Automatic Translation Service at borders

JAPAN

- Integrated Suica/PASMO system
- Al-based guidance at stations
- Smart maintenance
- Al-based non-contact displays
- "Move Up" 2027 (JR East)
- Smart Trains
- Expanding the role of Suica

