ORTHOGRAPHIC PROJECTIONS

Orthographic Projections

- Orthographic Projections is a technical drawing in which different views of an object are projected on different reference planes observing perpendicular to respective reference plane.
- **■** Different Reference planes are;
 - _ Horizontal Plane (HP)
 - Vertical Plane (VP)
 - Side or Profile Plane (PP)
- Different views are;
 - Front View (FV) Projected on VP
 - Top View (TV) Projected on HP
 - Side View (SV) Projected on PP

NOTATIONS

Following notations should be followed while naming Different views in orthographic projections.

OBJECT POINT A		LINE AB
IT'S TOP VIEW	a	a b
IT'S FRONT VIEW	a'	a' b'
IT'S SIDE VIEW	a	a b

Same system of notations should be followed

incase numbers, like 1, 2, 3 - are used.

TERMS 'ABOVE' & 'BELOW' WITH RESPECT TO H.P. AND TERMS 'INFRONT' & 'BEHIND' WITH RESPECT TO V.P.

Types of views

Projections

Parallel

Converge

Orthogonal Oblique

(—¹-J

Multiview Axonoi

netric

Multi-view drawing Pictorial drawing

Perspective drawing

View comparison

Type Multi-view drawing	Accurately presents object's details, i.e. size and shape.	Require training to	visualization.
Pictorial drawing	Easy to visualize.		le distortion le becomes ellipse AA omes obtuse angle.
Perspective drawing	Object looks more like what our eyes perceive.	Difficult to create Size and shape distortion	Distorted width

ian<ii<iii>i[>i

PATTERN OF PLANES & VIEWS (First Angle Method)

fSIKI < D A

HP IS ROTATED DOWNWARD 90⁰
AND
BROUGHT IN THE PLANE OF VP.

THIS IS A PICTORIAL SET-UP OF ALL THREE PLANES.
ARROW DIRECTION IS A NORMAL WAY OF OBSERVING THE OBJECT. BUT IN THIS DIRECTION ONLY VP AND A VIEW ON IT (FV) CAN BE SEEN. THE OTHER PLANES AND VIEWS ON THOSE CAN NOT BE SEEN.

PROCEDURE TO SOLVE ABOVE PROBLEM:-

TO MAKE THOSE PLANES ALSO VISIBLE FROM THE ARROW DIRECTION,

- A) HP IS ROTATED 90⁰ DOUNWARD
- B) PP, 90° IN RIGHT SIDE DIRECTION.

THIS WAY BOTH PLANES ARE BROUGHT IN THE SAME PLANE CONTAINING VP.

On clicking the button if a warning comes please click YES to continue, this program is safe for your pc.

PP IS ROTATED IN RIGHT SIDE 90° AND BROUGHT IN THE PLANE OF VP.

	VP		PP	
		FV	LSV	
X				Y
		TV		
	HP			

ACTUAL PATTERN OF PLANES & VIEWS
OF ORTHOGRAPHIC PROJECTIONS
DRAWN IN
FIRST ANGLE METHOD OF PROJECTIONS

Projection systems

1. First angle system

- European countries
- ISO standard

2. Third angle system

Canada, USA,
 Japan, Thailand

Orthographic views

Orthographic views

Views arrangement

1st angle system

3rd angle system

Right Side View Front View

Projection symbols

Methods of Orthogonal Projection

- 1. Natural Method: Revolve the object with respect to observer
- 2. Glass box method: The observer moves around the object.

 $Glass\ box$: Revolution of the planes of projection

Bottom view

Relative orientation of views

Summary: Problem solving steps

Steps for Orthographic Views

- 1. Select the necessary views
- 2. Layout the selected views on a drawing sheet.
- 3. Complete each selected views.
- 4. Complete the dimensions and notes.

View selection procedures

- Orient the object to the best position relative to a glass box.
- 2. Select the front view.
- 3. Select adjacent views.

Suggestions: Orient the object

- 1. The object should be placed in its natural position.
- 2. The orthographic views should represent the true size and true shape of an object (as much as possible).

GOOD

Suggestions: Select the front view

1. The **longest** dimension of an object should be presented as a **width** (in a front view).

Suggestions: Select the front view

2. The adjacent views project from the selected front view should be appeared in a natural position.

Suggestions: Select the front view

3. It has the fewest number of hidden lines.

Suggestions: Select an adjacent view

1. Choose the view that has the fewest number of hidden lines.

Suggestions: Select an adjacent view

2. Choose the **minimum** number of views that can represent the major features of the object.

Suggestions: Select an adjacent view

3. Choose the views that are suitable to a drawing sheet.

Summary

■ View selection has 3 steps

Object that requires only one-view

- Flat (thin) part having a uniform thickness such as a gasket, sheet metal etc.
- Cylindrical-shaped part.

Object that requires only one-view

J

■ Cylindrical-shaped part.

Object that requires only two-view

Identical adjacent view exists.

The 3rd view has no significant contours of the object. (provides no additional information)

Example

Object that requires only two-view

J

■ The 3rd view has no significant contours of the object, (provides no additional information)

Example 1

Object that requires only two-view

J

■ The 3rd view has no significant contours of the object. (provides no additional information)

Example 2

Steps to draw projections

- Identify surfaces perpendicular or inclined to the view
- Surfaces parallel to the view would not be visible in that view.
- First draw horizontal and vertical reference planes (easily identifiable on drawing)
- Start drawing from the reference planes.

Example-1

Draw the orthographic projections of Fig. 1

VP

Top view

Top view

-y

ORTHOGRAPHIC PROJECTIONS

1

FRONT VIEW L H SIDE VIEW

TOP VIEW

PICTORIAL PRESENTATION IS GIVEN

ORTHOGRAPHIC PROJECTIONS

DRAW FV AND TV OF THIS OBJECT BY FIRST ANGLE PROJECTION METHOD

ORTHOGRAPHIC PROJECTIONS

FV

1^_30→10 ←

30-

SV

-у

ALL VIEWS IDENTICAL

TV

ORTHOGRAPHIC PROJECTIONS

PICTORIAL PRESENTATION IS GIVEN

DRAW FV AND TV OF THIS OBJECT BY FIRST ANGLE PROJECTION METHOD

DRAW FV AND LSV OF THIS OBJECT BY FIRST ANGLE PROJECTION METHOD

aiKKIOIOI

PICTORIAL PRESENTATION IS GIVEN