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 Electric Circuits and Network Theorems 

There are certain theorems, which when applied to the solutions of electric networks, wither 
simplify the network itself or render their analytical solution very easy. These theorems can also be 
applied to an a.c. system, with the only difference that impedances replace the ohmic resistance of 
d.c. system. Different electric circuits (according to their properties) are defined below : 

1. Circuit. A circuit is a closed conducting path through which an electric current either flows 
or is intended flow. 

2. Parameters. The various elements of an electric circuit are called its parameters like resis- 
tance, inductance and capacitance. These parameters may be lumped or distributed. 

3. Liner Circuit. A linear circuit is one whose parameters are constant i.e. they do not change 
with voltage or current. 

4. Non-linear Circuit. It is that circuit whose parameters change with voltage or current. 

5. Bilateral Circuit. A bilateral circuit is one whose properties or characteristics are the same 
in either direction. The usual transmission line is bilateral, because it can be made to per- 
form its function equally well in either direction. 

6. Unilateral Circuit. It is that circuit whose properties or characteristics change with the 
direction of its operation. A diode rectifier is a unilateral circuit, because it cannot perform 
rectification in both directions. 

7. Electric Network. A combination of various electric elements, connected in any manner 
whatsoever, is called an electric network. 

8. Passive Network is one which contains no source of e.m.f. in it. 

9. Active Network is one which contains one or more than one source of e.m.f. 

10. Node is a junction in a circuit where two or more circuit elements are connected together. 

11. Branch is that part of a network which lies between two junctions. 

12. Loop. It is a close path in a cir- 
cuit in which no element or node 
is encountered more than once. 

13. Mesh. It is a loop that contains 
no other loop within it. For ex- 
ample, the circuit of Fig. 2.1 (a) 
has even branches, six nodes, 
three loops and two meshes  
whereas the circuit of Fig. 2.1 (b) 
has four branches, two nodes, six 
loops and three meshes. 

It should be noted that, unless stated 
otherwise, an electric network would be 
assumed passive in the following treat- 
ment. 

We will now discuss the various net- 
work theorems which are of great help in 
solving complicated networks. Inciden- 
tally, a network is said to be completely 
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Kirchhoff 

solved or analyzed when all voltages and all currents in its different elements are determined. 

Fig. 2.1 

There are two general approaches to network analysis : 

(i) Direct Method 
Here, the network is left in its original form while determining its different voltages and currents. 

Such methods are usually restricted to fairly simple circuits and include Kirchhoff’s laws, Loop 
analysis, Nodal analysis, superposition theorem, Compensation theorem and Reciprocity theorem 
etc. 

(ii) Network Reduction Method 

Here, the original network is converted into a much simpler equivalent circuit for rapid calcula- 
tion of different quantities. This method can be applied to simple as well as complicated networks. 
Examples of this method are : Delta/Star and Star/Delta conversions. 
Thevenin’s theorem and Norton’s Theorem etc. 

 

 Kirchhoff’s Laws * 

These laws are more comprehensive than Ohm’s law and are 
used for solving electrical networks which may not be readily solved 
by the latter. Kirchhoff’s laws, two in number, are particularly useful 
(a) in determining the equivalent resistance of a complicated net- 
work of conductors and (b) for calculating the currents flowing in the 
various conductors. The two-laws are : 

1. Kirchhoff’s Point Law or Current Law (KCL) 
It states as follows : 

in any electrical network, the algebraic sum of the currents meeting at a point (or junction) is 
zero. 

Put in another way, it simply means that the total current leaving a junction is equal to the total 
current entering that junction. It is obviously true because there is no accumulation of charge at the 
junction of the network. 

Consider the case of a few conductors meeting at a point A as in Fig. 2.2 (a). Some conductors 
have currents leading to point A, whereas some have currents leading away from point A. Assuming 
the incoming currents to be positive and the outgoing currents negative, we have 

I1 + (I2) + (I3) + (+ I4) + (I5) = 0 

or I1 + I4 I2 I3 I5 = 0 or I1 + I4 = I2 + I3 + I5 

or incoming currents = outgoing currents 

*      After Gustave Robert Kirchhoff (1824-1887), an outstanding German Physicist. 
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Node 
(a) R5 Loop 

(b)
 

Node (c) + V5 – Loop 
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R7 

– 

V7 

+ 
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Kirchhoff’s analysis for the 
above mesh (a) is given in 
(b) and (c) 

Sum currents IN 

I1 + I2 + I3 = 0 amps 
Sum currents OUT 

– I1 – I2 –I3 = 0 amps 
Kirchhoff’s Current Law 

Sum Voltages (counterclockwise order) : 

V5 + V6 + V7 + V8= 0 volts 

Sum Voltages (Clockwise order): 

– V – V – V + V = 0 volts 5 8 7 6 

Kirchhoff ’s Voltage Law 

Similarly, in Fig. 2.2 (b) for node A 

+ I + (I1) + (I2) + (I3) + (I4) = 0 or I= I1 + I2 + I3 + I4 

We can express the above conclusion thus :    I = 0 .............................................. at a junction 

Fig. 2.2 
 

2. Kirchhoff’s Mesh Law or Voltage Law (KVL) 
It states as follows : 
The algebraic sum of the products of currents and resistances in each of the conductors in 

any closed path (or mesh) in a network plus the algebraic sum of the e.m.fs. in that path is zero. 
In other words,  IR +  e.m.f. = 0 ...round a mesh 
It should be noted that algebraic sum is the sum which takes into account the polarities of the 

voltage drops. 

The basis of this law is this : If we start from a particular junction and go round the mesh till we 
come back to the starting point, then we must be at the same potential with which we started. Hence, 
it means that all the sources of e.m.f. met on the way must necessarily be equal to the voltage drops in 
the resistances, every voltage being given its proper sign, plus or minus. 

 

 Determination of Voltage Sign 

In applying Kirchhoff’s laws to specific problems, particular attention should be paid to the 
algebraic signs of voltage drops and e.m.fs., otherwise results will come out to be wrong. Following 
sign conventions is suggested : 

(a) Sign of Battery E.M.F. 
A rise in voltage should be given a + ve sign and a fall in voltage a ve sign. Keeping this in 
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Note. It should be noted that Kirchhoff’s laws are applicable both to d.c. and a.c. voltages and 
currents. However, in the case of alternating currents and voltages, any e.m.f. of self-inductance or 
that existing across a capacitor should be also taken into account (See Example 2.14). 

mind, it is clear that as we go from the ve terminal of a battery to its +ve terminal (Fig. 2.3), there is 
a rise in potential, hence this voltage should be given a + ve sign. If, on the other hand, we go from 
+ve terminal to ve  terminal, then there is a fall in potential, hence this voltage should be preceded 

Fig. 2.3 Fig. 2.4 

by a ve sign. It is important to note that the sign of the battery e.m.f. is independent of the 
direction of the current through that branch. 

(b) Sign of IR Drop 
Now, take the case of a resistor (Fig. 2.4). If we go through a resistor in the same direction as the 

current, then there is a fall in potential because current flows from a higher to a lower potential. 
Hence, this voltage fall should be taken ve. However, if we go in a direction opposite to that of the 
current, then there is a rise in voltage. Hence, this voltage rise should be given a positive sign. 

It is clear that the sign of voltage drop across a resistor depends on the direction of current 
through that resistor but is independent of the polarity of any other source of e.m.f. in the circuit 
under consideration. 

Consider the closed path ABCDA in Fig. 2.5. As we travel around the mesh in the clockwise 
direction, different voltage drops will have the following 
signs : 

I1R2    is  ve (fall in potential) 

I2R2    is  ve (fall in potential) 

I3R3    is + ve (rise in potential) 

I4R4    is  ve (fall in potential) 

E2    is  ve (fall in potential) 
E1    is + ve (rise in potential) 

Using Kirchhoff’s voltage law, we get 

I1R1 I2R2 I3R3 I4R4 E2  + E1 = 0 
or I1R1 + I2R2 I3R3 + I4R4 = E1 E2 

 Assumed Direction of Current 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2.5 

In applying Kirchhoff’s laws to electrical networks, the question of assuming proper direction of 
current usually arises. The direction of current flow may be assumed either clockwise or anticlockwise. 
If the assumed direction of current is not the actual direction, then on solving the quesiton, this 
current will be found to have a minus sign. If the answer is positive, then assumed direction is the 
same as actual direction (Example 2.10). However, the important point is that once a particular 
direction has been assumed, the same should be used throughout the solution of the question. 
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 Solving Simultaneous

Electric circuit analysis with the help of Kirchhoff’s laws usually involves solution of two or 
three simultaneous equations. These equations can be solved by a systematic elimination of the 
variables but the procedure is often lengthy and laborious and hence more liable to error. Determi
nants and Cramer’s rule provide
manipulation of their coefficients.
very large, use of a digital computer

 

 Determinants 

The symbol 
a b

 
 

is called a determinant of the second order (or 2 × 2 determinant) because

it contains two rows (ab and cd
the elements or constituents of the determinant. Their number in the present case is 2

The evaluation of such a determinant is accomplished by cross
below : 

The above result for a second order determinant can be remembered as

upper left times lower right 

a1 b1 c1 
The symbol   a2     b2 c2 

a3 b3 c3 

 

be evaluated (or expanded) as under :
1. Multiply each element

tained by omitting the
just minor as shown in Fig.

 

2. Prefix + and sing alternately to the terms so

3. Add up all these terms together to get 

Considering the first column,

Expanding in terms of first column, we

Technology 

b
b b c

Solving Simultaneous Equations 

Electric circuit analysis with the help of Kirchhoff’s laws usually involves solution of two or 
three simultaneous equations. These equations can be solved by a systematic elimination of the 

but the procedure is often lengthy and laborious and hence more liable to error. Determi
provide a simple and straight method for solving network equations

coefficients. Of course, if the number of simultaneous equations happens
computer can make the task easy. 

is called a determinant of the second order (or 2 × 2 determinant) because

cd) and two columns (ac and bd). The numbers a, b, c and 
the elements or constituents of the determinant. Their number in the present case is 22 = 4.

The evaluation of such a determinant is accomplished by cross-multiplicaiton is illustrated 

a b 
  = 

c   d
 = ad bc 

The above result for a second order determinant can be remembered as 

upper left times lower right minus upper right times lower left 

 

 

 

 
represents a third-order determinant having 32 = 9 elements. It may

be evaluated (or expanded) as under : 
element of the first row (or alternatively, first column) by a determinant

the row and column in which it occurs. (It is called minor determinant
just minor as shown in Fig. 2.6). 

Fig. 2.6 

sing alternately to the terms so obtained. 

Add up all these terms together to get the value of the given determinant. 

column, minors of various elements are as shown in Fig. 2.6. 

Expanding in terms of first column, we get 

   =  a 1 
2

 
3 

c2    a b1    
c3 

2 b3 
1     a3    

b1 c1 

3 2  2 

=  a1  (b2c3  b3c2)  a2  (b1c3  b3c1) + a3  (b1c2  b2c

c
c

Electric circuit analysis with the help of Kirchhoff’s laws usually involves solution of two or 
three simultaneous equations. These equations can be solved by a systematic elimination of the 

but the procedure is often lengthy and laborious and hence more liable to error. Determi- 
equations through 

happens to be 

is called a determinant of the second order (or 2 × 2 determinant) because 

and d are called 
= 4. 

iplicaiton is illustrated 

= 9 elements. It may 

determinant ob- 
determinant or 

c1) ...(i) 



  57  DC Network Theorems 
 

2 11  2 11 6  2 

b
b

a
a

a
a

b
b

4
 5 

3 2 

Expanding in terms of the first row, we get 

   =  a 1 
2 
3 

2    b1 
2 

3 3 

2    c1 
2 2 

3 3 3 

= a1 (b2c3 b3c2) b1 (a2c3 a3c2) + c1 (a2b3 a3b2) 
which will be found to be the same as above. 

Solution. We will expand with the help of 1st column. 

D = 7  
6  2  ( 3)  3  4  ( 4)  3  4 

= 7 [(6 × 11) (2 × 2)] + 3 [(3 × 11) (4 × 2)] 4 [(3 × 2) (4 × 6)] 

= 7 (66 4) + 3 (33 8) 4 (6 + 24) = 191 

 Solving Equations with Two Unknowns 

Suppose the two given simultaneous equations are 

ax + by = c 

dx + ey = f 

Here, the two unknown are x and y, a, b, d and e are coefficients of these unknowns whereas c and 
f are constants. The procedure for solving these equations by the method of determinants is as fol- 
lows : 

1. Write the two equations in the matrix form as a b  x    c 
d e  y  f 

2. The common determinant is given as  = 
a b  ae  bd 
d e

3. For finding the determinant for x, replace the co- 
efficients of x in the original matrix by the con- 
stants so that we get determinant 1 given by 

4. For finding the determinant for y, replace coeffi- 
cients of y by the constants so that we get 

5. Apply Cramer’s rule to get the value of x and y 

1 = 

 
2 = 

c b 
= (ce bf) 

f e 
 

a c 
= (af cd) 

d f 

x  
1  ce  bf  

 

and y  
2  

af  cd
 

 

 ae  bd  ae  bd 
 

 
Solution. The matrix form of the equations is 4  3 i1   1

3  5 i2  2

  = 3 
 3  (4   5)  ( 3  3)   11 

1 = 
1     3 
2     5  (1  5)  ( 3  2)  1 

2 = 
4 1  (4  2)  (1 3)  5 

Example 2.2. Solve the following two simultaneous equations by the method of determinants : 

4i1   3i2    = 1 
3i1   5i2    = 2 

7  3     4 
Example 2.1.  Evaluate the determinant  3 6  2 

 4    2 11 

c
c

c
c
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 i = 1  1   1 ;  

i  
2   5 

 

1   11 11 2  11 

 Solving Equations With Three Unknowns 

Let the three simultaneous equations be as under : 

ax + by + cz = d 

ex + fy + gz = h 

jx + ky + lz = m 

The above equations can be put in the matrix form as under : 
 

a b c   x
e f g   y = 

 
 

 d  h 
  j k l   z  m

The value of common determinant is given by 
a b c 

  = e f g 
j k l 

 

 a ( fl  gk)  e (bl  ck)  j(bg  cf ) 

The determinant for x can be found by replacing coefficients of x in the original matrix by the 
constants. 

 
 1 = 

d b c 
h f g 
m k l 

 d ( fl  gk)  h (bl  ck)  m(bg  cf ) 

Similarly, determinant for y is given by replacing coefficients of y with the three constants. 

a d c 
2 = e h g 

j   m l 
 a (hl  mg)  e (dl  mc)  j (dg  hc) 

In the same way, determinant for z is given by 
a b d 

3 = e f h 
j k m 

 a ( fm  hk)  e (bm  dk)  j (bh  df ) 

 
As per Cramer’s rule x = 

1 , y  
2 , z  

3 
   

  







Solution. As explained earlier, the above equations can be written in the form 
  

1  3  4 i1 
1  2  1 i2 
2    1    2 i3 

14
=   7

  2

  = 

 

1   = 

1 3 4
1 2 1  1(4  1)  1 (6  4)  (3  8)   9 
2    1    2



14   3 4
 7   2 1  14 (4  1)  7 (6  4)  2(3  8)  18 
  2 1   2

Example 2.3. Solve the following three simultaneous equations by the use of determinants and 
Cramer’s rule 

i1 + 3i2 + 4i3 =  14 
i1  + 2i2  + i3  =  7 
2i1 + i2 + 2i3 = 2 



  59  DC Network Theorems 
 

2   = 

 
3   = 

 1 14 4
 1 7 1  1 (14  2)  1 (28  8)  2 (14  28)   36 
2 2    2
 1   3 14
 1  2 7  1 (4  7)  1 (6  14)  2 (21  28)   9 
2 1 2

According to Cramer’s rule, 

i =     1  18 
1 9 –2A ; i2 

 2 
   36 

9 
–4A ; i3 

 3 
  9 

1A
 

9 

  Example 2.4.  What is the voltage Vs across the open switch in the circuit of Fig. 2.7 ?  

Solution. We will apply KVL to find Vs. Starting from point A in the clockwise direction and 
using the sign convention given in Art. 2.3, we have 

Fig. 2.7 Fig. 2.8 

+Vs  + 10 20 50 +  30   =  0  Vs = 30 V 

  Example 2.5.  Find the unknown voltage V1 in the circuit of Fig. 2.8.  

Solution. Initially, one may not be clear regarding the solution of this question. One may think 
of Kirchhoff’s laws or mesh analysis etc. But a little thought will show that the question can be solved 
by the simple application of Kirchhoff’s voltage law. Taking the outer closed loop ABCDEFA and 
applying KVL to it, we get 

16 × 3 4 × 2 + 40 V1 =  0 ;  V1 =  16 V 
The negative sign shows there is a fall in potential. 

 
Directions of the two current 
sources are as shown. 

Solution. Let us arbitrarily 
choose the directions of I1, I2 and 
I3 and polarity of V as shown in 
Fig. 2.9.(b). We will use the sign 
convention for currents as given 
in Art. 2.3. Applying KCL to 
node A, we have 

 
 
 
 
 
 
 
 
 
 

Fig. 2.9 

Example 2.6. Using Kirchhoff’s Current Law and Ohm’s Law, find the magnitude and polarity 
of voltge V in Fig. 2.9 (a). 
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Example 2.8.  Determine the currents in the unbal- 
anced bridge circuit of Fig. 2.11 below. Also, determine the 
p.d. across BD and the resistance from B to D. 

3 2 

Example 2.7. For the circuit shown in Fig. 2.10, find VCE and VAG. 

(F.Y. Engg. Pune Univ.) 

I1 + 30 + I2 I3 8 = 0 

or I1  I2  +  I3  =  22 ...(i) 
Applying Ohm’s law to the three resistive branches in Fig. 2.9 (b), we have 

I1 = 
V  , I    V , I     V 
2 4 6 

(Please note the ve sign.) 

Substituting these values in (i) above, we get 

V    V   V 

2         6  4 = 22 or V = 24 V 

 I1 = V/2 = 24/2 = 12 A, I2 = 24/6 = 4 A, I3 = 24/4 = 6 A 

The negative sign of I2 indicates that actual direction of its flow is opposite to that shown in Fig. 
2.9 (b). Actually, I2, flows from A to B and not from B to A as shown. 

Incidentally, it may be noted that all currents are outgoing except 30A which is an incoming 
current. 

Solution. Consider the two battery circuits of Fig. 2.10 separately. Current in the 20 V battery 
circuit ABCD is 20 (6 + 5 + 9) = 1A. Similarly, 
current in the 40 V battery curcuit EFGH is = 
40/(5 + 8 + 7) = 2A. Voltage drops over differ- 
ent resistors can be found by using Ohm’s law. 

For finding VCE i.e. voltage of point C with 
respect to point E, we will start from point E 
and go to C via points H and B.  We  will find 
the algebraic sum of the voltage drops met on 
the way from point E to C. Sign convention of 
the voltage drops and battery e.m.fs. would be 
the same as discussed in Art. 2.3. 

Fig. 2.10 

 VCE =  5 × 2) + (10) (5 × 1) = 5V 
The negative sign shows that point C is negative with respect to point E. 

VAG = (7 × 2) + (10) + (6 × 1) = 30 V. 
The positive sign shows that point A is at a positive 

potential of 30 V with respect to point G. 
 
 

 
Solution. Assumed current directions are as shown in 

Fig. 2.11. 

Applying Kirchhoff’s Second Law to circuit DACD, 
we get 

x 4z + 2y = 0 or x 2y + 4z = 0 ...(1) 

Circuit ABCA gives 

2(x z) + 3 (y + z) + 4z = 0 or 2x 3y 9z = 0 
...(2) 

 
 
 
 
 
 
 
 

 
Fig. 2.11 
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Circuit DABED gives 

x    2(x z) 2 (x  +  y)  +  2   =  0 or 5x + 2y 2z = 2 ...(3) 

Multiplying (1) by 2 and subtracting (2) from it, we get 

y +  17z  =  0 ...(4) 

Similarly, multiplying (1) by 5 and subtracitng (3) from it, we have 

12y +  22z   =  2   or  6y + 11z  =  1 ...(5) 

Eliminating y from (4) and (5), we have 91z = 1 or z = 1/91 A 

From (4); y = 17/91 A. Putting these values of y and z in (1), we get x = 30/91 A 

Current in DA = x = 30/91 A Current in DC = y = 17/91 A 

Current in AB  =   x z 
 

 

Current in CB  =   y z 
 

 

Current in external circuit =   x y 

30  1  
91 91 
17  1  
91 91 
30 17 
91 91 

29 A 
91 

 

18 A 
91 

 

47 A 
91 

Current in AC = z = 1/91 A 

Internal voltage drop in the cell = 2 (x + y) = 2 × 47/91 = 94/91 V 
 

 

P.D.  across points D and B   =  2 94
 

91 

 
 

88 V *
 

91 
Equivalent resistance of the bridge between points D and B 

 

=
 p.d. between points B and D  88/91  88  1.87  (approx)

 
current between points B and D 47/91 47 

Solution By Determinants 

The matrix from the three simultaneous equations (1), (2) and (3) is 
 

 1    2 4  x  0
2  3    9  y  0
5 2     2  z  2



 1   2 4
  =  2  3  9  1 (6  18)  2 (4  8)  5 (18  12)  182 

5 2     2


 = 
0

  2 4
1 0  3  9  0 (6  18)  0 (4  8)  2 (18  12)  60 

2 2     2


 1   0 4  1  2 0
2 = 2  0   9  34, 3  2  3 0  2 

5    2  2


5 2    2
   

 x  =     1  60 
182 

30 A, y 
91 

 34  
182 

17 A, z 
91 

  2  
182 

 1 A 
91 

 

 
Solution. Let the current directions be as shown in Fig. 2.12. 

Apply Kirchhoff’s Second law to the closed circuit ABDA, we get 

5  x z +  y   =  0    or    x y + z = 5 ...(i) 
 

* P.D. between D and B = drop across DC + drop across CB = 2 × 17/91 + 3 × 18/91 = 88/91 V. 

Example 2.9. Determine the branch currents in the network of Fig. 2.12 when the value of each 
branch resistance is one ohm. (Elect. Technology, Allahabad Univ. 1992) 


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Example 2.10. State and explain Kirchhoff’s laws. Determine the current 
tery in the circuit shown in Fig.

Similarly, circuit BCDB gives

(x z) + 5 + (y + z) + 

or x  y  

Lastly, from circuit ADCEA

y (y +  z) + 10 (x 

or x + 3y 

From Eq. (i) and (ii), we get, 

Substituting z = 0 either in Eq. (
(iii), we get 

x  
x + 3

Subtracting Eq. (v) from (

4y = 5 or y = 5/4 = 1.24 A 

Eq. (iv) gives x = 25/4 A = 6.25

Current in branch AB = current

Current in  branch BD  
AD = current in branch DC = 1.25 A; 

Solution. Let the current distribution be as shown in the figure. Considering the
ABCA and applying Kirchhoff’s Second Law, we have

100x 300z + 500y = 0
or x 5y + 3z  =  0

Similarly, considering the closed
have 

300z 100(y + z) + 500(x z

or 5x  y 
Taking the circuit ABDEA

100x 500(x z) + 100 

or    7x + y 5z  = 1 ................................
The value of x, y and z may

the above three simultaneous equations or by 
method of determinants as given below

Putting the above three equations
 



Technology 

State and explain Kirchhoff’s laws. Determine the current supplied by the bat
tery in the circuit shown in Fig. 2.12 A. (Elect. Engg. I, Bombay

gives 

) + z=0  

y   3z =  5 ...(ii) 

ADCEA, we get 

x +  y)=  0 

y + z  =  10 ...(iii) 

), we get, z = 0 

= 0 either in Eq. (i) or (ii) and in Eq. 

y =  5 ...(iv) 

+ 3y =  10 ...(v) 

(iv), we get 

= 5/4 = 1.24 A 

= 25/4 A = 6.25 A 

current in branch BC = 6.25 A 

BD  =  0;  current in   branch 

 
 
 
 
 
 
 
 

Fig. 2.12 

1.25 A; current in branch CEA = 6.25 + 1.25 = 7.5 A. 

Let the current distribution be as shown in the figure. Considering the close circuit
and applying Kirchhoff’s Second Law, we have 

= 0 
0 ....................... (i) 

closed loop BCDB, we 

z) = 0 

 9z  =  0 ......... (ii) 

ABDEA, we get 

) + 100 100(x + y) = 0 

................................ (iii) 
may be found by solving 

the above three simultaneous equations or by the 
method of determinants as given below : 

equations in the matrix form, we have 

 
Fig. 2.12 A 

 

 1    5 3  x  0
5  1    9  y  0
7 1    5  z  1

 1   5 3 0    5 3
  =  5  1   9  240, 1  0  1  9  48 

7 1  5  1 1  5


 1  0 3  1  5 0
2 = 5  0   9  24, 3  5  1 0  24 

7 1  5 7 1    1

supplied by the bat- 
(Elect. Engg. I, Bombay Univ.) 

close circuit 
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Example 2.11. Two batteries A and B are 
connected in parallel and load of 10  is connected 
across their terminals. A has an e.m.f. of 12 V and an 
internal resistance of 2  ; B has an e.m.f. of 8 V and 
an internal resistance of 1 . Use Kirchhoff ’s laws to 
determine the values and directions of the currents 
flowing in each of the batteries and in the external 
resistance. Also determine the potential difference 
across the external resistance. 

(F.Y. Engg. Pune Univ.) 

Note. To confirm the correctness of the answer, the simple check is to find the value of the 
external voltage available across point A and C with the help of the two parallel branches. If the value 
of the voltage comes out to be the same, then the answer is correct, otherwise it is wrong. For 
example, VCBA = 2 × 1.625 + 12 = 8.75 V. From the second branch VCDA = 1 × 0.75 + 8 = 8.75 V. 
Hence, the answer found above is correct. 

x   =  
 48  
240 

1 A; y 
5 

 24  
240 

 1 A ; z 
10 

 24  
240 

 1 A 
10 

Current supplied by the battery is x + y = 1/5 + 1/10 = 3/10 A. 
 
 
 
 
 
 
 
 
 
 
 

Solution. Applying KVL to the closed circuit 
ABCDA of Fig. 2.13, we get 

 

Fig. 2.13 

12 +  2x  1y +  8   =  0    or  2x  y = 4 ...(i) 

Similarly, from the closed circuit ADCEA, we get 

8 + 1y + 10 (x + y)   =   0    or    10x + 11y = 8 ...(ii) 

From Eq. (i) and (ii), we get 

x = 1.625 A and y = 0.75 A 

The negative sign of y shows that the current is flowing into the 8-V battery and not out of it. In 
other words, it is a charging current and not a discharging current. 

Current flowing in the external resistance = x + y = 1.625 0.75 = 0.875 A 

P.D. across the external resistance = 10 × 0.875 = 8.75 V 

  Example 2.12. Determine the current x in the 4-resistance of the circuit shown in Fig. 2.13 (A). 

Solution. The given circuit is redrawn with assumed distribution of currents in Fig. 2.13 A (b). 
Applying KVL to different closed loops, we get 

 

Fig. 2.13 A 


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Example 2.13. Applying Kirchhoff’s 

1

Example 2.15. In the network shown in Fig. 2.16, v = 4V, v = 4 cos 2t and i 1 4 3 = 2e t/3. 

Determine i2. 

Circuit EFADE 

2y +  10z  +  (x  y 6) =  0 or    x 3y + 10z = 6 ...(i) 

Circuit ABCDA 

2 (y + z + 6) 10 + 3 (x y z 6) 10z = 0    or    3x 5y 14z = 40 ...(ii) 

Circuit EDCGE 

(x  y 6)  3(x y z  6) 4x + 24 = 0 or    8x  4y  3z = 48 ...(iii) 

From above equations we get x = 4.1 A 
 

laws to different loops in Fig. 2.14, find the 
values of V1 and V2. 

Solution. Starting from point A and 
applying Kirchhoff’s voltage law to loop 
No.3, we get 

V3 + 5 = 0 or V3 = 5 V 
Starting from point A and applying 

Kirchhoff’s voltage law to loop No. 1, we 
get 

10 30 V1 +5 = 0 or V1 = 15 V 
The negative sign of V1 denotes that its 

polarity is opposite to that shown in the 
figure. 

 
get 

Starting from point B in loop No. 3, we 
 
( 15) V2 + ( 15) = 0 or V2 = 0 

 
Fig. 2.14 

 

 
Substituting this value in Eq (i) above, we get 

i + 5e2t 16e2t 3 sin t = 0 
or i1 = 3 sin t + 11e 2t 

The voltage v1 developed across the coil is 

v1 = L 
di1  4. d (3 sin t  11e 2t ) 
dt dt 

= 4 (3 cos t 22e2t) = 12 cos t 88e2t 

Example 2.14. In the network of Fig. 2.15, the different currents and voltages are as under : 

i = 5e2t, i = 3 sin t and v = 4e 2t 2 4 3 

Using KCL, find voltage v1. 
Solution. According to KCL, the algebraic sum of the currents meet- 

ing at juncion A is zero i.e. 

i1 + i2 + i3 + (i4) = 0 
i1  + i2  + i3  i4   =  0 ...(i) 

Now, current through a capacitor is given by i = C dv/dt 

 i = 3 C 
dv3 

dt 
2d (4e 2t ) 

dt 
16e 2t 

Fig. 2.15 
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Solution. Applying KVL to closed mesh ABCDA, we get 

v1 v2 + v3 + v4 = 0 

Now v3 = L 
di3  6. d (2e t/3) 
dt dt 

=   4e t/3 

    4 v2 4e + 4 cos 2t = 0 t/3 

or v2 = 4 cos 2t 4e 4 t/3 

Now, i2 = 
C 

dv2  8 d (4 cos 2t  4e t/3  4) 
dt dt 

 

 
 

Fig. 2.16 

 i = 8 
  8 sin 2t  

4 
e t/3 

   64 sin 2t  32 e t/3 
2  3 

 3 
 

 
 

 
Fig. 2.17 (a) Fig. 2.17 (b) 

 

Solution. Transform the 12-volt and 4-ohm resistor into current-source and parallel resistor. 

Mark the nodes O, A, B and C on the diagram. Self-and mutual conductance terms are to be 
wirtten down next. 

At A, Gaa = 1/4 + 1/2 + 1/4 = 1 mho 
At B, Gbb = 1/2 + 1/5 + 1/100 = 0.71 mho 
At C, Gcc = 1/4 + 1/5 + 1/20 = 0/50 mho 
Between A and B, Gab = 0.5 mho, 
Between B and C, Gbe = 0.2 mho, 
Between A and C, Gac = 0.25 mho. 
Current Source matrix : At node A, 3 amp incoming and 9 amp outgoing currents give a net 

outgoing current of 6 amp. At node C, incoming current = 9 amp. At node B, no current source is 
 6

connected. Hence, the current-source matrix is : 


0
9

The potentials of three nodes to be found are : VA, VB, VC 
 

 1  0.5   0.25 VA   6
  0.5 0.71  0.20 VB 

   0 0.25  0.20     
9


 0.5 VC   

Example 2.16. Use nodal analysis to determine the voltage across 5  resistance and the 
current in the 12 V source. [Bombay University 2001] 
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For evaluating VA, VB, VC, following steps are required. 

1  0.5  0.25 
   0.5 0.71  0.20  1  (0.710.5  0.04)  0.5 ( 0.25  0.05)  0.25 (0.1  0.71  0.25) 

 0.25    0.20 0.5  
= 0.315  0.15 0.069375 = 0.095625 

 6  0.5     0.25 
a =  0.5 0.71  0.20   0.6075 

9    0.20  0.5 
1    6     0.25 

b =  0.5 0  0.20  1.125 
 0.25 9 0.50 

1  0.5     6 
c =  0.5 0.71 0  2.2475 

 0.25    0.20 9 

VA = a/ = +0/6075/0.095625 = 6.353 volts VB 

= b/ = 1.125/0.095625 = 11.765 volts VC = 
c/ = 2.475/0.95625 = 25.882 volts 
Hence, voltage across 5-ohm resistor = VC VB = 14.18 volts. Obviously. B is positive w.r. to A. 

From these node potentials, current through 100-ohm resistor is 0.118 amp; (i) current through 20 
ohm resistor is 1.294 amp. 

(ii) Current through 5-ohm resistor = 14.18/5 = 2.836 amp. 
(iii) Current through 4-ohm resistor between C and A = 19.53/4 = 4.883 amp 
Check : Apply KCL at node C 
Incoming current = 9 amp, from the source. 
Outgoing currents as calculated in (i), (ii) and (iii) above = 1.294 + 2.836 + 4.883  9 amp 

(iv) Current through 2-ohm resistor = (VB VA)/2 = 2.706 amp, from B to A. 
(v) Current in A-O branch = 6.353/4 = 1.588 amp 

 
Fig. 2.17 (c) Equivalent Fig. 2.17 (d) Actual elements 

In Fig. 2.17 (c), the transformed equivalent circuit is shown. The 3-amp current source (O to A) 
and the current of 1.588 amp in A-O branch have to be interpreted with reference to the actual circuit, 
shown in Fig. 2.17 (d), where in a node D exists at a potential of 12 volts w.r. to the reference node. 
The 4-ohm resistor between D and A carries an upward current of {(12 6.353)/4 =} 1.412 amp, 
which is nothing but 3 amp into the node and 1.588 amp away from the node, as in Fig. 2.17 (c), at 
node A. The current in the 12-V source is thus 1.412 amp. 

Check. KCL at node A should give a check that incoming currents should add-up to 9 amp. 

1.412 + 2.706 + 4.883  9 amp 
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Fig. 2.18 (a) 

 

Soltuion (A). Matrix-method for Mesh analysis can be used. Mark three loops as shown, in Fig. 
2.18 (a). Resistance-matrix should be evaluated for current in 5-ohm resistor. Only, i3 is to be found. 

R11  = 3, R22 = 6, R33 = 9 R12 = 1, R23 = 2, R13 = 2 
Voltage-source will be a column matrix with entries serially as : + 8 Volts, + 10 Volts, + 12 Volts. 

3  1    2 
  =  1 6  2  3  (54  4)  1 ( 9  4)  2 (2  12)  109 

 2    2 9 

3  1 8 
3 =  1 6 10  396 

 2  2 12 

i3 = 3/ = 396/109 = 3.633 amp. 
Solution (B). Alternatively, Thevenin’s theorem can be applied. 

For this, detach the 5-ohm resistor from its position, Evaluate VTH at the terminals X-Y in Fig. 
 (b) and de-activating the source, calculate the value of RTH as shown in Fig. 2.18 (c). 

 

Fig. 2.18 (b) Fig. 2.18 (c) 
 

By observation, Resistance-elements of 2 × 2 matrix have to be noted. 

Raa = 3, Rbb = 5, Rab = 1 

3  1 ia = 
 8 

 1 6 ib  10 

Example 2.17. Determine current in 5- resistor by any one method. 
(Bombay University 2001) 
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Example 2.18 (b). In the circuit of Fig. 2.19 (b), find current through 1- resistor using both 
THEVENIN’s theorem and SUPERPOSITION theorem. 

i = 
8

  1  3  1 
 
 58/17  3.412 amp 

a 
 

ib = 

10 6 

3 8 
 1  10 

1 6 

 (17)  38/17  2.2353 amp 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2.18 (d) 

VXY = VTH = 12 + 2ia + 2ib = 23.3 Volts, 

with y positive w.r. to X. RTH can be evaluated from 
Fig. 2.18 (c), after transforming delta configuration at 
nodes B-D-C to its equivalent star, as shown in Fig. 
2.18 (d) 

Further simplification results into : 

RXY = RTH = 1.412 ohms 

Hence, Load Current = VTH/(RL + RTH) = 23.3/6.412 
= 3.643 amp. 

This agrees with result obtained earlier. 
 

 
Fig. 2.19 (a) 

 

Solution. Write the conductance matrix for the network, with nodes numbered as 1, 2, 4 as 
shown. 

g11 = 1 + 0.5 + 0.5 = 2 mho, g22 = 1 + 0.5 = 1.5 mho, 

g33 = 1 mho, g12 = 0.5 mho, g23 = 0, g13 = 1 mho 

2     0.5    1 0  0.5  1 
  =  0.5 1.5 0 

 1 0   1.0 
 1.25, 1  2 1.5 0 

1 0 1 
 2.5 

 

2   0     1 
2 =  0.5   2 0 

 1    1  1.0 
 2.5 

 

This gives V1 = 1/ = 2.50/1.25 = 2 Volts And 

V2 = 2/ = 2.50/1.25 = 2 Volts 

It means that the 2-ohm resistor between nodes 1 and 2 does not carry current. 

Example 2.18 (a). Determine the voltages 1 and 2 of the network in Fig. 2.19 (a) by nodal 
analysis. (Bombay University, 2001) 



  69  DC Network Theorems 
 

 

 

Solution. (i) By Thevenin’s Theorem : 
Fig. 2.19 (b) 

 

 
Fig. 2.19 (c) Fig. 2.19 (d ) 

Take VB = 0. Then VA = 4 + 8 = 12, since from D to C, a current of 4 A must flow, as shown in Fig. 
 (b), applying KCL ot Node D. 

VTH = VAB = 12 volts 
From Fig. 2.19 (d), RTH = 2 ohms 

IL = 12/(2 + 1) = 4 amp 
(ii) By Superposition Theorem : One source acts at a time. 

Current through A-B (1 ohm) is to be calculated due to each source 
and finally all these contributions added. 

Due to 4-V source : 
1-ohm resistor carries a current of 4/3 amp from A to B, as 

shown in Fig. 2.19 (e). 
Fig. 2.19 (e). 4-V Source acts 

 

 
Fig. 2.19 (f ). 1-A Source acts Fig. 2.19 (g ). 3-A Source acts 

Due ot 1-A source : 2/3 Amp from A to B, as shown in Fig. 2.19 (f ) 
Due to 3-A source : 2 Amp from A to B as shown in Fig. 2.19 (g) 
Total current = 4 amp from A to B. 
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 Independent and Dependent Sources 

Those voltage or current sources, which do not depend on any other quantity in the circuit, are 
called independent sources. An independent d.c. voltage source is shown in Fig. 2.20 (a) whereas a 
time-varying voltage source is shown in Fig. 2.20 (b). The positive sign shows that terminal A is 
positive with respect to terminal B. In other words, potential of terminal A is v volts higher than that 
of terminal B. 

Fig. 2.20 

2     0.5    1 0  0.5  1 
2 =  0.5 1.5 0 

 1 0   1.0 
 1.25, 1  2 1.5 0 

1 0 1 
 2.5 

Similarly, Fig. 2.20 (c) shows an ideal constant current source whereas Fig. 2.20 (d) depicts a 
time-varying current source. The arrow shows the direction of flow of the current at any moment 
under consideration. 

A dependent voltage or current source is one which depends on some other quantity in the circuit 
which may be either a voltage or a current. Such a source is represented by a diamond-shaped symbol 
as shown in Fig. 2.21 so as not to confuse it with an independent source. There are four possible 
dependent sources : 

1. Voltage-dependent voltage source [Fig. 2.21 (a)] 

2. Current-dependent voltage source [Fig. 2.21 (b)] 

3. Voltage-dependent current source [Fig. 2.21 (c)] 

4. Current-dependent current source  [Fig. 2.21 (d)] 

Such sources can also be either constant sources or time-varying sources. Such sources are often 
met in electronic circuits. As seen above, the voltage or current source is dependent on the and is 

 
Fig. 2.21 

proportional to another current or voltage. The constants of proportionality are written as a, r, g and 
. The constants a and  have no unis, r has the unit of ohms and g has the unit of siemens. 
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Example 2.19. Using Kirchhoff’s current law, find the values of the currents i1 and i2 in the 
circuit of Fig. 2.22 (a) which contains a current-dependent current source. All resistances are in 
ohms. 

Example 2.20. By applying Kirchhoff ’s current law, obtain the values of v, i1 and i2 in the circuit 
of Fig. 2.23 (a) which contains a voltage-dependent current source. Resistance values are in ohms. 

Independent sources actually exist as physical entities such as a battery, a d.c. generator and an 
alternator etc. But dependent sources are parts of models that are used to represent electrical proper- 
ties of electronic devices such as operational amplifiers and transistors etc. 

Solution. Applying KCL to node A, we get 
2 i1  + 4 i1  i2 =  0  or   3i1  + i2  = 2  

By Ohm’s law, i1 = v/3 and i2 = v/2 
Substituting these values above, we get 

3(v/3) + v/2 = 2 or v = 4 V 

 i1 = 4/3 A and i2 = 4/2 = 2 A 
The value of the dependent current source is = 4i1 = 4 × (4/3) = 16/3 A. 

Fig. 2.22 

Since i1 and i2 come out to be negative, it means that they flow upwards as shown in Fig. 2.22(b) 
and not downwards as presumed. Similarly, the current of the dependent source flows downwards as 
shown in Fig. 2.22 (b). It may also be noted that the sum of the upwards currents equals that of the 
downward currents. 

Solution. Applying KCL to node A of the circuit, we get 

2 i1 + 4v i2 = 0 or i1 + i2 4v = 2 
Now, i1 = v/3 and i2 = v/6 

 
v  v  4v 
3 6 

= 2 or v   4 
V 

7 
 i = 

   4 
A and i 

   2 
A and 4v 4 

 4    16 
V

 
1 21 2 21 7 7 

 
 
 
 
 

 
 

Fig. 2.23 
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Example 2.23. In the circuit of Fig. 2.26, apply KCL 
to find the value of current i when (a) K = 2 (b) K = 3 and 
(c) K = 4. Both resistances are in ohms. 

Example 2.21. Apply Kirchhoff ’s voltage law, to find the values of current i and the voltage 
drops v1 and v2 in the circuit of Fig. 2.24 which contains a current-dependent voltage source. What 
is the voltage of the dependent source ? All resistance values are in ohms. 

Example 2.22. In the circuit shown in Fig. 2.25, apply KCL to find the value of i for the case 
when (a) v = 2 V, (b) v = 4 V (c) v = 6 V. The resistor values are in ohms. 

Since i1 and i2 come out to be negative and value of current source is also negative, their direc- 
tions of flow are opposite to those presumed in Fig. 2.23 (a). Actual current directions are shown in 
Fig. 2.23 (b). 

Solution. Applying KVL to the circuit of Fig. 2.24 and starting from point A, we get 
v1 + 4i v2 + 6 = 0  or  v1  4i + v2  = 6  

Now, v1   =  2i and v2 = 4i 
 2i 4i + 4i = 6 or i = 3A 

 v1    =  2 × 3 = 6V   and v2  = 4 × 3 = 12 V 

Fig. 2.24 Fig. 2.25 
 

Voltage of the dependent source = 4i = 4 × 4 = 12 V 

Solution. (a) When v = 2 V, current through 2 resistor which is connected in parallel with the 
2 v source = 2/2 = 1A. Since the source current is 2 A, i = 2 1 = 1 A. 

(b) When v = 4V, current through the 2 resistor = 4/2 = 2 A. Hence i = 2 2 = 0 A. 

(c) When v = 6 V, current through the 2 resistor = 6/2 = 3 A. Since current source can supply 
only 2 A, the balance of 1 A is supplied by the voltage source. Hence, i = 1 A i.e. it flows in a 
direction opposite to that shown in Fig. 2.25. 

 
 

 
Solution. Since 6  and 3 resistors are connected in 

parallel across the 24-V battery, i1 = 24/6 = 4 A. 
Applying KCL to node A, we get i 4 + 4 K 8 = 0 or 

i = 12 4 K. 

(a) When K = 2, i = 12 4 × 2 = 4 A 

(b) When K = 3, i = 12 4 × 3 = 0 A 

(c) When K = 4, i = 12 4 × 4 = 4 A 

It means that current i flows in the opposite direciton. 

 
 
 
 
 

Fig. 2.26 

 

 

Example 2.24. Find the current i and also the power and voltage of the dependent source in 
Fig. 2.72 (a). All resistances are in ohms. 
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Example 2.26. Use KCL to find the value of v in 
the circuit of Fig. 2.29. 

Solution. The two current sources can be combined into a single source of 8 6 = 2 A. The two 
parallel 4  resistances when combined have a value of 2  which, being in series with the 10   
resistance, gives the branch resistance of 10 + 2 = 12 . This 12  resistance when combined with 
the other 12  resistance gives a combination resistance of 6 . The simplified circuit is 
shownin Fig. 2.27 (b.) 

 

 
 

Applying KCL to node A, we get 

Fig. 2.27 

0.9i + 2 i V/6 =  0  or  0.6i = 12 v  

Also v = 3i  i = 10/3 A. Hence, v = 10 V. 
The power furnished by the current source = v × 0.9 i = 10 × 0.9 (10/3) = 30 W. 

Example 2.25. By using voltage-divider rule, calculate the voltages vx and vy in the network 
shown in Fig. 2.28. 

Solution. As seen, 12 V drop in over 
the series combination of 1, 2 and 3  re- 
sistors. As per voltage-divider rule vx = drop 
over 3  = 12 × 3/6 = 6 V. 

The voltage of the dependent source = 
12 × 6 = 72 V. 

The voltage vy equals the drop across 8 
 resistor connected across the voltage 
source of 72 V. 

Again using voltge-divider rule, drop 
over 8  resistor = 72 × 8/12 = 48 V. 

Hence, vy = 48 V. The negative sign 
has been given because positive and negative signs of 
vy are actually opposite to those shown in Fig. 2.28. 

Fig. 2.28 

 
 

Solution. Let us start from ground and go to point 
a and find the value of voltage va. Obviously, 5 + v = 
va or v = va 5. Applying KCL to point, we get 

6  2 v + (5  va)/1 = 0 or 6  2 (va  5) + 
(5 va) = 0 or va = 7 V 

Hence, v = va 5 = 7 5 = 2 V. Since it turns out 
to be positive, its sign as indicated in the figure is 
correct. 

 
 
 
 
 
 
 
 

Fig. 2.29 
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Example 2.28. Find the values of i1, v1, vx and vab in the network of Fig. 2.32 with its terminals 
a and b open. 

 

 
Solution. Applying KCL to point A, we have 2 + 6 i1 = 0 or i1 = 8 A. 
Application of KVL to the closed circuit on the right hand side gives 5 i1 v2 = 0 or v2 = 5 

i1 = 5 × 8 = 40 V. 

 
Fig. 2.31 Fig. 2.32 

Solution. It is obvious that i1 = 4 A. Applying KVL to the left-hand closed circuit, we get 
40 + 20 v1 = 0 or v1 = 20 V. 

Similarly, applying KVL to the second closed loop, we get 
v1  vx  + 4v1  50 = 0 or vx  = 5 v1  50 = 5 × 20 50 = 150 V     
Again applying KVL to the right-hand side circuit containing vab, we get 
50 4v1 10 vab = 0  or  vab = 50 4 (20) 10 = 120 V 

       Example 2.29 (a). Find the current i in the circuit of Fig. 2.33. All resistances are in ohms.     

Solution. The equivalent resitance of the two parallel paths across point a is 3 || (4 + 2) = 2 . 
Now, applying KVL to the closed loop, we get 24 v 2v 2i = 0. Since v = 2i, we get 24 2i  
2(2i) 2i = 0 or i = 3 A. 

Fig. 2.33 Fig. 2.34 

Example 2.27. (a) Basic Electric Circuits by Cunninghan. 
Find the value of current i2 supplied by the voltage-con- 
trolled current source (VCCS) shown in Fig. 2.30. 

Solution. Applying KVL to the closed circuit ABCD, 
we have 4 + 8 v1 = 0  v1 = 4 V 

The current supplied by VCCS is 10 v1 = 10 × 4 = 40 A. 
Since i2 flows in an opposite direction to this current, hence 
i2 = 40 A. 

Example 2.27. (b). Find the voltage drop v2 across the 
Fig. 2.30 current-controlled  voltage source  (CCVS) shown  in 

Fig. 2.28. 
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Example 2.29 (c). In the circuit of Fig. 2.35, find the values 
of i and v. All resistances are in ohms. 

 

 
Solution. It will be seen that the dependent current source is related to i2. Applying KCL to node 

a, we get 4 i + 3i2 i2 = 0 or 4 i1 + 3 i2 = 0. 
Applying ohm’s law, we get i1 = v/5 and i2 = v/15. 
Substituting these values in the above equation, we get 

4 (v/5) + 2 (v/15) = 0 or v = 60 V and i2 = 4 A. 
 
 

Solution. It may be noted that 12 + v = va or v = va 12. 
Applying KCL to node a, we get 

0  va  v  
va  12 

2 4 2 
= 0 or va = 4 V Fig. 2.35 

Hence, v = 4 12 = 8 V. The negative sign shows that its polarity is opposite to that shown in 
Fig. 2.35. The current flowing from the point a to ground is 4/2 = 2 A. Hence, i = 2 A. 

 

Tutorial Problems No. 2.1 

1. Apply KCL to find the value of I in Fig. 2.36. [8 A] 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.36 Fig. 2.37 

2. Applying Kirchhoff’s voltage law, find V1 and V2  in Fig. 2.37. [V1 = 10 V;   V2  5 V] 
3. Find the values of currents I2  and I4  in the network of Fig. 2.38. [I2  = 4 A ; I4  = 5 A] 

 
 
 
 
 
 
 
 

 
Fig. 2.38 Fig. 2.39 

4. Use Kirchhoff’s law, to find the values of voltages V1 and V2 in the network shown in Fig. 2.39. 
[V1 = 2 V ; V2 = 5 V] 

Example 2.29. (b) Determine the value of current i2 and voltage drop v across 15  resistor in 
Fig. 2.34. 
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5. Find the unknown currents in the circuits shown in Fig. 2.40 (a). [I1 = 2 A ; I2 = 7 A] 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.40 

6. Using Kirchhoff’s current law, find the values of the unknown currents in Fig. 2.40 (b). 

[I1  = 2 A; I2  = 2 A ; I3  = 4 A ; I4  = 10 A] 
7. In Fig. 2.41, the potential of point A is 30 V.  Using Kirchhoff’s voltage law, find (a) value of V and 

(b) power dissipated by 5  resistance.  All resistances are in ohms. [100 V; 500 W] 
 
 
 
 
 
 
 
 
 

Fig. 2.41 Fig. 2.42 Fig. 2.43 

8. Using KVL and KCL, find the values of V and I in Fig. 2.42. All resistances are in ohms. 

[80 V; 4 A] 
9. Using KCL, find the values VAB, I1, I2  and I3  in the circuit of Fig. 2.43.  All resistances are in ohms. 

[VAB = 12 V ; I1  = 2/3 A; I2 = 1 A; I3 = 4/3  A] 
10. A bridge network ABCD is arranged as follows : 

Resistances between terminals AB, BC, CD, DA, and BD are 10, 20, 15, 5 and 40 ohms respec- 
tively. A 20 V battery of negligible internal resistance is connected between terminals A and C. 
Determine the current in each resistor. 

[AB = 0.645 A; BC = 0.678 A; AD = 1.025 A; DB = 0.033 A; DC = 0.992 A] 
11. Two batteries A and B are connected in parallel and a load of 10 is connected across their terminals. 

A has an e.m.f. of 12 V and an internal resistance of 2  ; B has an e.m.f. of 8 V and an internal 
resistance of 1 . Use Kirchhoff’s laws to determine the values and directions of the currents flowing 
in each of the batteries and in the external resistance. Also determine the p.d. across the external 
resistance. [IA = 1.625 A (discharge), IB = 0.75 A (charge) ; 0.875 A; 8.75 V] 

12. The four arms of a Wheatstone bridge have the following resistances ; AB = 100, BC = 10, CD = 4, DA 
= 50 ohms. 
A galvanometer of 20 ohms resistance is connected across BD. Calculate the current through the 
galvanometer when a potential difference of 10 volts is maintained across AC. 

[0.00513 A] [Elect. Tech. Lond. Univ.] 
13. Find the voltage Vda in the network shown in Fig. 2.44 (a) if R is 10  and (b) 20 . 

[(a) 5 V (b) 5 V] 
14. In the network of Fig. 2.44 (b), calculate the voltage between points a and b i.e. Vab. 

[30 V] (Elect. Engg. I, Bombay Univ.) 



 

 

 

 

 

[Hint : In the above two cases,

15. A battery having an E.M.F. 
another battery having an 
parallel are placed in series with a regulating resistance of 5 
Calculate the magnitude and direction of the current in each 
the supply mains. 

16. Three batteries P, Q and
common load of 100 A.
the current supplied by each battery and the load

17. Two storage batteries are
open-circut e.m.f. of one
resistances are 0.03  and
current in each battery

18. Two storage batteries, A
a load the resistance of
this lood and (ii) the current
circuit e.m.f. of A is 12.5
resistance of A being 0.05 

[(i) 10.25

19. The circuit of Fig. 2.45 contains
Find the current supplied
voltage source. Both resistances are in ohms. 

20. Find the equivalent resistance

 

Fig. 2.46 
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Fig. 2.44 

cases, the two closed loops are independent and no current passes between

E.M.F. of 110 V and an internal resistance of 0.2 is connected in parallel 
another battery having an E.M.F. of 100 V and internal resistance 0.25 . The two batteries 
parallel are placed in series with a regulating resistance of 5  and connected across 200 V 
Calculate the magnitude and direction of the current in each battery and the total current taken from 

[IA  = 11.96 (discharge); IB  = 30.43 A (charge) : 18.47
(Elect Technology, Sumbhal

and R consisting of 50, 55 and 60 cells in series respectively supply
A. Each cell has a e.m.f of 2 V and an internal resistance of 0.005

the current supplied by each battery and the load voltage. 

[1.2 A; 35.4 A : 65.8 A : 100.3 V] (Basic Electricity, Bombay Univ.

are connected in parallel to supply a load having a resistance
one battery (A) is 12.1 V and that of the other battery (B) is 11.8 V.

and 0.04  respectively. Calculate (i) the current supplied at the
battery (iii) the terminal voltage of each battery. 

[(i) 102.2 A (ii) 62.7 A (A). 39.5 A (B) (iii) 10.22 V] (London Univ.

A and B, are connected in parallel to supply 
of which is 1.2 . Calculate (i) the current in 
current supplied by each battery if the open- 
12.5 V and that of B is 12.8 V, the internal 

being 0.05  an that of B 0.08 . 

) 10.25 A (ii) 4 (A), 6.25 A (B)] (London Univ.) 

contains a voltage-dependent voltage source. 
supplied by the battery and power supplied by the Fig. 2.45

voltage source. Both resistances are in ohms. [8 A ; 1920 W] 

resistance between terminals a and b of the network shown in Fig.

Fig. 2.47 Fig. 2.48 
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between them]. 

connected in parallel with 
The two batteries in 

and connected across 200 V mains. 
battery and the total current taken from 

= 30.43 A (charge) : 18.47 A] 
Sumbhal Univ.) 

supply in parallel a 
0.005 . Determine 

Basic Electricity, Bombay Univ.) 

resistance of 0.1 . The 
 The internal 
the lead (ii) the 

London Univ.) 

2.45 

Fig. 2.46. [2 ] 
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 Maxwell’s Loop Curent Method 

This method which is particularly well-suited to coupled circuit solutions employs a system of 
loop or mesh currents instead of branch currents (as in Kirchhoff’s laws). Here, the currents in 
different meshes are assigned continuous paths so that they do not split at a junction into branch 
currents. This method eliminates a great deal of tedious work involved in the branch-current method 
and is best suited when energy sources are voltage sources rather than current sources. Basically, this 
method consists of writing loop voltage equations by Kirchhoff’s voltage law in terms of unknown 
loop currents. As will be seen later, the number of independent equations to be solved reduces from 
b by Kirchhoff’s laws to b (j 1) for the loop current method where b is the number of branches and 
j is the number of junctions in a given network. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.51 

Fig. 2.51 shows two batteries E1 and E2 
connected in a network consisting of five 
resistors. Let the loop currents for the 
three meshes be I1, I2 and I3. It is obvious 
that current through R4 (when considered 
as a part of the first loop) is (I1 I2) and 
that through RS is (I2  I3). However, 
when R4 is considered part of the second 
loop, current through it is (I2  I1). 
Similarly, when R5 is considered part of 
the third loop, current through it is 
(I3 I2). Applying Kirchhoff’s voltage 
law to the three loops, we get, 

E1   I1R1   R4  (I1   I2)  =  0    or    I1 (R1  + R4) I2  R4  E1 = 0 ...loop 1 

Fig. 2.50 Fig. 2.49 

23. State and explain Kirchhoff’s current law.  Determine the value of RS and RI, in the network of Fig. 
2.49 if V2 = V1/2 and the equivalent resistance of the network between the terminals A and B is 100 . 

[RS  = 100/3 .    RP  = 400/3 ]   (Elect. Engg. I, Bombay  Univ.) 
24. Four resistance each of R ohms and two resistances each of S ohms are connected (as shown in Fig. 

2.50) to four terminasl AB and CD. A p.d. of V volts is applied across the terminals AB and a resis- 
tance of Z ohm is connected across the terminals CD. Find the value of Z in terms of S and R in order 
that the current at AB may be V/Z. 

Find also the relationship that must hold between R and S in order that the p.d. at the points EF be 

V/2. [Z =    R (R + 2S); S = 4R] 

[36 V] 

[ 40 A] 

21. Find the value of the voltage v in the network of Fig. 2.47. 

22. Determine the current i for the network shown in Fig. 2.48. 
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Similarly, I2R2 R5 (I2 I3) R4 (I2 I1) = 0 

or I2  R4  I2  (R2  + R4  + R5) + I3R5  =  0 ...loop 2 

Also  I3R3   E2   R5  (I3   I2)  =  0    or    I2R5  I3  (R3  + R5) E2 = 0 ...loop 3 
The above three equations can be solved not only to find loop currents but branch currents as 

well. 

 Mesh Analysis Using Matrix Form 

Consider the network of Fig. 2.52, which contains 
resistances and independent voltage sources and has three 
meshes. Let the three mesh currents be designated as I1, I2 
and I3 and all the three may be assumed to flow in the 
clockwise direction for obtaining symmetry in mesh 
equations. 

Applying KVL to mesh (i), we have 

E1 I1R1 R3 (I1 I3) R2 (I1 I2) = 0 

or    (R1  + R2  + R3) I1 R2I2 R3I3  = E1 ...(i) 
Similarly, from mesh (ii), we have 

E2 R2 (I2 I1) R5 (I2 I3) I2R4 = 0 

or    R2I1  + (R2  + R4  + R5) I2  R5I3 = E2 ...(ii) 
Applying KVL to mesh (iii), we have 

E3 I3R7 R5 (I3 I2) R3 (I3 I1) I3 R6 = 0 

 
Fig. 2.52 

or    R3I1  R5I2  + (R3  + R5  + R6  + R7) I3 = E3 ...(iii) 
It should be noted that signs of different items in the above three equations have been so changed 

as to make the items containing self resistances positive (please see further). 
The matrix equivalent of the above three equations is 

 (R1  R2  R3)  R2  R3   I1   E1   R2  (R2  R4  R5 )  R5   I2 
   E2 

  R3  R5  (R3  R5  R6  R7 )
  I3 

  E3 


        
It would be seen that the first item is the first row i.e. (R1 + R2 + R3) represents the self resistance 

of mesh (i) which equals the sum of all resistance in mesh (i). Similarly, the second item in the first 
row represents the mutual resistance between meshes (i) and (ii) i.e. the sum of the resistances com- 
mon to mesh (i) and (ii). Similarly, the third item in the first row represents the mutual-resistance of 
the mesh (i) and mesh (ii). 

The item E1, in general, represents the algebraic sum of the voltages of all the voltage sources 
acting around mesh (i). Similar is the case with E2 and E3. The sign of the e.m.f’s is the same as 
discussed in Art. 2.3 i.e. while going along the current, if we pass from negative to the positive 
terminal of a battery, then its e.m.f. is taken positive. If it is the other way around, then battery e.m.f. 
is taken negative. 

In general, let 

R11 = self-resistance of mesh (i) 

R22 = self-resistance of mesh (ii) i.e. sum of all resistances in mesh (ii) 
R33 = Self-resistance of mesh (iii) i.e. sum of all resistances in mesh (iii) 

R12 = R21 = [Sum of all the resistances common to meshes (i) and (ii)] * 

R23 = R32 = [Sum of all the resistances common to meshes (ii) and (iii)]* 
 

* Although, it is easier to take all loop currents in one direction (Usually clockwise), the choice of direcion for any 
loop current is arbitrary and may be chosen independently of the direction of the other loop currents. 
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Example. 2.30. Write the impedance matrix of the 
value of current I3. 

R31 = R13 = [Sum of all the resistances common to meshes 

Using these symbols, the generalized form of the above matrix equivalent can be written as

If there are m independent 
the matrix form as under : 



 ... 

R
             

The above equations can be written in a more compact form as [
Ohm’s law in matrix form. 

In the end, it may be pointed out that the directions of mesh currents can be selected arbitrarily.
If we assume each mesh current to flow 

(i) All self-resistances will always be postive and 
negative. We will adapt this sign convention in the solved examples to

The above main advantage of the generalized form of all mesh equations is that they can be 
easily remembered because of their
by inspection and then solved by
taneous equations. 

Solution. Different items of the mesh

R11 = 1 + 3 + 2 = 6 

R12 = R

The mesh equations in the matrix form are
 

 


31 

 

 
 
 
 

 
 

 
 

I3 =  /  121  0.823 
147 

 

* In general, if the two currents through the common resistance flow in the same direction, then the mutual 
resistance is taken as negative. One the other hand, if the two currents flow in the same direction, mutual 
resistance is taken as positive.

R

  R11 
R21 



R12 
R22 
R32 

R13   
E2 

 or 
3  1 6 

 


 

= 

  6 
 2 
               3 

 2 
7 

 1 

3
1 
6

 
3 

 
= 

  6 
 2 
               3 

 2 
7 

 1 

5
0  
0

Technology 

R

the impedance matrix of the network shown in Fig. 2.53 and find the 
 (Network Analysis A.M.I.E. Sec. 

[Sum of all the resistances common to meshes (i) and (iii)] * 

Using these symbols, the generalized form of the above matrix equivalent can be written as
  

 R11 
R21 

31 

R12 
R22 R32 

R13   I1 
R23 

 I2 


R33 
  I3 



 E1 
= E2 

 E3 


        
 meshes in any liner network, then the mesh equations can be

 R11 R21 
R12 
R22 

R13 
R23 

... 

... 
R1m   I1   E1 
R2m 

  I2 
  E2 


... ... ... ... ...   ...    ...  ... ... ... ... ...   ...   ... 
R R R ... R 

 
I
  

E 


              31 32 33 3m                                    m                        m 
above equations can be written in a more compact form as [Rm] [Im] = [Em]. It is known as 

In the end, it may be pointed out that the directions of mesh currents can be selected arbitrarily.
If we assume each mesh current to flow in the clockwise direction, then 

resistances will always be postive and (ii) all mutual resistances will always be 
will adapt this sign convention in the solved examples to follow. 

The above main advantage of the generalized form of all mesh equations is that they can be 
their symmetry. Moreover, for any given network, these can
by the use of determinants. It eliminates the tedium of deriving

Different items of the mesh-resistance matrix [Rm] are as under : 

= 1 + 3 + 2 = 6  ; R22 = 2 + 1 + 4 = 7  ; R33 = 3 + 2 + 1 = 6  ;

R21 = 2  ; R23 = R32 = 1  ; R13 = R31 = 3  ; 

E1  = + 5 V ; E2 = 0 ; E3  = 0. 
The mesh equations in the matrix form are 

0.823 A  
 

Fig. 2.53 

In general, if the two currents through the common resistance flow in the same direction, then the mutual 
resistance is taken as negative. One the other hand, if the two currents flow in the same direction, mutual 
resistance is taken as positive. 

 I1        E1         6   2   3  I1  5 R23 
 I2 

  =  
or  2   7    1 I2 

  0 R33 
  I3 

  E3 
   

6  I3 
    0        

 6(42  1)  2(12  3)  3 (2  21)  147 

 6  2(5)  3( 35)  121 

network shown in Fig. 2.53 and find the 
B.W. 1980) 

Using these symbols, the generalized form of the above matrix equivalent can be written as 

be written in 

]. It is known as 

In the end, it may be pointed out that the directions of mesh currents can be selected arbitrarily. 

all mutual resistances will always be 

The above main advantage of the generalized form of all mesh equations is that they can be 
can be written 

deriving simul- 

 

 

In general, if the two currents through the common resistance flow in the same direction, then the mutual 
resistance is taken as negative. One the other hand, if the two currents flow in the same direction, mutual 
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Solution. Since there are three meshes, let the three loop currents be shown in Fig. 2.51. 

 

 
 

For loop 1 we get 

Fig. 2.54 

20  5I1  3 (I1  I2) 5 = 0 or    8I1  3I2 = 15 ...(i) 
For loop 2 we have 

4I2 + 5 2 (I2 I3) + 5 + 5 3 (I2 I1) = 0 or    3I1  9I2  + 2I3 = 15 ...(ii) 
Similarly, for loop 3, we get 

 8I3   30  5  2(I3   I2) = 0 or    2I2  10I3 = 35 ...(iii) 
Eliminating I1 from (i) and (ii), we get 63I2   16I3   = 165 ...(iv) 
Similarly, for I2 from (iii) and (iv), we have I2 = 542/299 A 

From (iv), I3 =  1875/598 A 
Substituting the value of I2 in (i), we get I1 = 765/299 A 
Since I3 turns out to be negative, actual directions of flow of loop currents are as shown in 

Fig. 2.55. 

Fig. 2.55 

Discharge current of B1 = 765/299A 

Charging current of B2 = I1 I2 = 220/299 A 
Discharge current of B3 = I2 + I3 = 2965/598 A 
Discharge current of B4 = I2 = 545/299 A; Discharge current of B5 = 1875/598 A 
Solution by Using Mesh Resistance Matrix. 

The different items of the mesh-resistance matrix [Rm] are as under : 

R11 = 5 + 3 = 8 ; R22 = 4 + 2 + 3 = 9 ; R33 = 8 + 2 = 10 
R12 = R21 = 3  ; R13 = R31 = 0 ; R23 = R32 = 2 
E1 = algebraic sum of the voltages around mesh (i) = 20 5 = 15 V 

E2 = 5 + 5 + 5 = 15 V ; E3 = 30 5 = 35 V 

Example 2.31. Determine the current supplied by each battery in the circuit shown in Fig. 2.54. 
(Electrical Engg.  Aligarh Univ.) 
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R

 2 10 

Hence, the mesh equations in the matrix form are 
 R11 R12 R13   I1   E1     8    3 0  I1   15R21 R22 R23 

 I2 
 = E2 

 or  3 9  2 I2 
   15  

31 R32 R33 
  I3 

  E3 
    0     2 10  I3 

  35
          

8    3 0 
  =  3 9  2  8(90  4)  3( 30)  598 

0    2 10 

15    3 0 
1 = 15 9 


 2  15(90  4) – 15( 30)  35 (6)  1530 

8 15 0 
2 =  3 15  2  8(150  70)  3(150  0)  1090 

0    35 10 

8    3 15 
3 =  3 9 15  8(315  30)  3(105  30)   1875 

0     2     35 

I = 
1  1530  765 A;  I   

2  1090  545 A;  I   
3  

 1875 
A

 
 

1  598 299 2  598 299 3  598 
 

 
Solution. The three loop currents are as shown in Fig. 2.53 (b). 

For loop 1, we have 

1 (I1  I2) 3 (I1  I3) 4I1 + 24 = 0    or    8I1  I2 3I3 = 24 ...(i) 
For loop 2, we have 

12  2I2  12 (I2  I3) 1 (I2  I1) =  0    or    I1  15I2  +  12I3 = 12 ...(ii) 
Similarly, for loop 3, we get 

12 (I3  I2) 2I3  10 3 (I3  I1)  =  0 or  3I1  +  12I2  17I3  = 10 ...(iii) 

Eliminating I2  from Eq. (i) and (ii) above, we get, 119I1  57I3 = 372 ...(iv) 
Similarly, eliminating I2 from Eq. (ii) and (iii), we get, 57I1 111I3  = 6 ...(v) 
From (iv) and (v) we have, 

 
Solution by Determinants 

I1 = 40,950/9,960 = 4.1 A 

The three equations as found above are 

8I1   I2   3I3  =   24 
I1 15I2 + 12I3 =   12 
3I1 + 12I2 17I3 = 10 

8  1  3  x    24
Their matrix form is  1  15 12  y   12

3 12     17  z     10

8  1  3  24  1  3
  1   15 12  664, 1   12   15 12  2730 

3 12     17                10 12  17

 I1 = 1/ = 2730/664 = 4.1 A 

Example 2.32. Determine the current in the 4- branch in the circuit shown in Fig. 2.56. 

(Elect. Technology, Nagpur Univ.) 

35 
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1

Fig. 2.59 Fig. 2.58 Fig. 2.57 

Tutorial Problems No. 2.2 

1. Find the ammeter current in Fig. 2.57 by using loop analysis. 

[1/7 A] (Network Theory Indore Univ. 1981) 

 

 
Fig. 2.56 

Solution by Using Mesh Resistance Matrix 

For the network of Fig. 2.53 (b), values of self resistances, mutual resistances and e.m.f’s can be 
written by more inspection of Fig. 2.53. 

R11 = 3 + 1 + 4 = 8  ; R22 = 2 + 12 + 1 = 15  ; R33 = 2 + 3 + 12 = 17 
R12 = R21 = 1; R23 = R32 = 12 ; R13 = R31 = 3 

E1 = 24 V ; E2 = 12 V ; E3 = 10 V 
The matrix form of the above three equations can be written by inspection of the given network 

as under :- 
 R11 R12 R13   I1   E1    8  1  3  I1   24R21 R22 R23 

 I2 
  E2 

 or   1 15   12 I2 
   12  

31 R32 R33 
  I3 

  E3 
  3     12 17  I3 

  10
         

 = 8 (255 144) + 1(17 36) 3 (12 + 45) = 664 
  24  1  3

1 =   12 15  12  24 (255  144)  12( 17  36)  10(12  45)  2730 
 10     12 17

 I =     1 2730 
664 

4.1 A 

It is the same answer as found above. 
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2. Using mesh analysis, determine the voltage across the 10 k resistor at terminals a-b of the circuit 
shown in Fig. 2.58. [2.65 V] (Elect. Technology, Indore Univ.) 

3. Apply loop current method to find loop currents I1, I2 and I3 in the circuit of Fig. 2.59. 

[I1 = 3.75 A, I2 = 0, I3 = 1.25 A] 

 Nodal Analysis With Sources 

The node-equation method is based directly on Kirchhoff’s current law unlike loop-current method 
which is based on Kirchhoff’s voltage law. However, like loop current method, nodal method also 

has the advantage that a minimum 
number of equations need be written to 
determine the unknown quantities. 
Moreover, it is particularly suited for 
networks having many parallel circuits 
with common ground connected such as 
electronic circuits. 

For the application of this method, 
every junction in the network where three 
or more branches meet is regarded a 

Fig. 2.60 node. One of these is regarded as the 
reference node or datum node or zero-potential node. Hence the number of simultaneous equations 
to be solved becomes (n 1) where n is the number of independent nodes. These node equations 
often become simplified if all voltage sources are converted into current sources (Art. 2.12). 

(i) First Case 

Consider the circuit of Fig. 2.60 which has three nodes. One of these i.e. node 3 has been taken 
in as the reference node. VA represents the potential of node 1 with reference to the datum node 3. 
Similarly, VB is the potential difference between node 2 and node 3. Let the current directions which 
have been chosen arbitrary be as shown. 

For node 1, the following current equation can be written with the help of KCL. 

I1 = I4 + I2 

Now I1R1    =  E1   VA        I1  =  (E1  VA)/R1 ...(i) 

Obviously, I4   =  VA/R4 Also, I2R2 = VA VB (ä VA > VB) 

 I2 = (VA VB)/R2 

Substituting these values in Eq. (i) above, we get, 
  

E1   VA =   
VA   

VA   VB 
   

R1 R4 R2 

Simplifying the above, we have 

V   
  1    1    1   

 
VB    

E1 A  R R R  R R   = 0 ...(ii) 

  1 2 4  2 1 

The current equation for node 2 is I5 = I2 + I3 
  

or 
VB

 
 = 

VA  VB  
E2  VB 

  

...(iii) 
R5 R2 R3 

or V  1  1  1  
 

VA  
E2  0 

 
  

...(iv) B  R R R  R R 
   2 3 5  2 3 

Though the above nodal equations (ii) and (iii) seem to be complicated, they employ a very 
simple and systematic arrangement of terms which can be written simply by inspection. Eq. (ii) at 
node 1 is represented by 
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1. The product of node potential VA and (1/R1 + 1/R2 + 1/R4) i.e. the sum of the reciprocals of 
the branch resistance connected to this node. 

2. Minus the ratio of adjacent potential VB and the interconnecting resistance R2. 
3. Minus ratio of adjacent battery (or generator) voltage E1 and interconnecting resistance R1. 
4. All the above set to zero. 

Same is the case with Eq. (iii) which applies to node 2. 
 

Fig. 2.61 

Using conductances instead of resistances, the above two equations may be written as 

VA  (G1  + G2  + G4) VBG2  E1G1 = 0 ...(iv) 

VB  (G2  + G3  + G5) VAG2  E2G3 = 0 ...(v) 
To emphasize the procedure given above, consider the circuit of Fig. 2.61. 

V 
 1  1  1  1  

 
VC  

VB  
E1  0 The three node equations are A  R R R R  R R R (node 1) 

  1 2 5 8  2 8 1 

V  
  1    1    1   

 
VA   

VB   0 C  R R R  R R (node 2) 

   2 3 6  2 3 

V 
 1  1  1  1  

 
VC  

VA  
E4  0 B  R R R R  R R R (node 3) 

  3 4 7 8  3 8 4 

After finding different node voltages, various currents can be calculated by using Ohm’s law. 

(ii) Second Case 

Now, consider the case when a third 
battery of e.m.f. E3 is connected between 
nodes 1 and 2 as shown in Fig. 2.62. 

It must be noted that as we travel from 
node 1 to node 2, we go from the ve ter- 
minal of E3 to its +ve terminal. Hence, 
according to the sign convention given in 
Art. 2.3, E3 must be taken as positive. 
However, if we travel from node 2 to node 
1, we go from the +ve to the ve terminal 

Fig. 2.62
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Example 2.33.  Using Node voltage method, find the current in the 3 resistance for the net- 
work shown in Fig. 2.63. (Elect. Tech. Osmania Univ.) 

of E3. Hence, when viewed from node 2, E3 is taken negative. 
For node 1 

I1 I4 I2 = 0 or I1 = I4 + I1 as per KCL 

Now, I  
E1  VA ; I 

1 R1 
2 

 
 

 
VA  E3  VB ; I

 
R2 

4
 
 

VA 

R4 

 E1   VA   
VA   

VA   E3   VB 
   

R1 R4 R2 
 

or V 
 1  1  1  

 
E1  

VB  
E2  0 

 
   

...(i) A  R R R  R R R 
  1 2 3  1 2 2 

It is exactly the same expression as given under the First Case discussed above except for the 
additional term involving E3. This additional term is taken as +E3/R2 (and not as E3/R2) because 
this third battery is so connected that when viewed from mode 1, it represents a rise in voltage. Had 
it been connected the other way around, the additional term would have been taken as E3/R2. 
For node 2 

I2  + I3  I5 = 0 or    I2  + I3 =  I5 as per KCL 
 

Now, as before, I2 = 
VA  E3  VB , I

 
R2 

3
 

 

 
E2  VB , I

 
R3 

5
 
 

VB 

R5 

 
VA   E3   VB   

E2   VB   
VB 

   

R2 R3 R5 
 

On simplifying, we get V 
 1  1  1  

 
E2  

VA  
E3  0 

 
   

...(ii) B  R R R  R R R 
   2 3 5  3 2 2 

As seen, the additional terms is E3/R2  (and not + E3/R2) because as viewed from this node, E3 

represents a fall in potential. 

It is worth repeating that the additional term in the above Eq. (i) and (ii) can be either +E3/R2 or 
E3/R2  depending on whether it represents a rise or fall of potential when viewed from the node 
under consideration. 

Solution. As shown in the figure node 2 has 
been taken as the reference node. We will now 
find the value of node voltage V1. Using the tech- 
nique developed in Art. 2.10, we get 

 

V 
 1  

1  1   4  
 4  2   0 

1   5 2 2  2  5 

The reason for adding the two battery volt- 
ages of 2 V and 4 V is because they are connected 
in additive series. Simplifying above, we get V1 = 
8/3 V. The current flowing through the 3 



resistance towards node 1 is = 
6  (8/3)  2 A 

(3 + 2) 3 

Alternatively 
 

 
6  V 4 V 

 
Fig. 2.63 

1   1 = 0 
5 2 2 

12 2V1 + 20 5V1 = 0 
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Example 2.34. Frame and solve the node equations of the network of Fig. 2.64. Hence, find the 
total power consumed by the passive elements of the network. (Elect. Circuits Nagpur Univ.) 

Solution. The node equation for node 1 is 

V 


1  1  1   
V2  15  0 

1  0.5  0.5 1 

or    4V1  2V2 = 15 ...(i) 

Similarly, for node 2, we have 

V 1  1  1   
V2  20  0 

1  2 0.5  0.5 1 

or    4V1   7V2  =  40 ...(ii) 
 V2 = 11 volt and V1 = 37/4 volt 
Now, 

Fig. 2.64 

The passive elements of the 
network are its five resistances. 
Total  power consumed by them  is 
= 5.752 × 1 + 3.52 × 0.5 + 92 × 1 + 
9.252 × 1 + 5.52  2 = 266.25    

Example 2.35. Find the branch 
currents in the circuit of Fig. 2.65 
by using (i) nodal analysis and 
(ii) loop analysis. 

Solution. (i) Nodal Method 
Fig. 2.65 

A  

7V1 = 32 
  

Also 
6  V1  

4  V1 

5 2 
= 

V1 

2 
12 2V1 + 20 5V1 = 5 V1 

12V1 = 32; V1 = 8/3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

I = 
15  37/4  23 A 5.75 A; I  

11 37/4  3.5 A
 

1 I 4 2 0.5 
 

I = 5.75  3.5  9.25 A ; I  
20  11 

= 9 A ; I = 9 3.5 = 5.5 A 
4 3 1 5 

 
 
 
 
 
 
 
 
 
 
 

The equation for node A can be 
written by inspection as explained in Art. 2-12. 

 

V 
 1  1  1  

 
E1  

VB  
E3  0 A  R R R  R R R 

  1 2 4  1 2 2 

Substituting the given data, we get, 
 

V 1  1  1  6  
VB  5  0 

6 2 3 6 2 2 
For node B, the equation becomes 

 

 
or  2 VA  VB  = 3 ...(i) 

V 
 1  1  1  

 
E2  

VA  
E3  0 B  R R R  R R R 

 2 3 5  3 2 2 
  

 V   
 1  1  

1   10  
VA   5  0  V  

VA  5 
 

  

...(ii) 

B   2 4 4  4 2 2 B 2 
From Eq. (i) and (ii), we get, 
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A B 

3 3

V = 4 V , V  17 V 
3 3 

 

I1 = 
E1 VA 

R1 

6   4/3 7 A 
6 9 

 
 

VA 
I2 = 

 
 

E3 VB 

R2 

(4/3)   5   (17/3) 1 A
 

2 3 
 

I3   = 
 

I4   = 

E2 VB 

R3 

VA 4/3 
R4 3 

10   17/3 
4 

 

 
 

4 A, I5 
9 

13 A 
12 

VB 

R5 

 
 
17/3 

4 

 
 

17 A 
12 

(ii) Loop Current Method Fig. 2.66 

Let the direction of flow of the three loop currents be as shown in Fig. 2.66. 

Loop ABFA : 

 6I1  3(I1  I2) + 6 = 0 
or 3I1   I2   =  2 ...(i) 

Loop BCEFB : 

+ 5  2I2  4(I2  I3) 3 (I2  I1) = 0 

or 3I1  9I2  + 4I3    =   5 ...(ii) 
Loop CDEC : 

 4I3   10  4 (I3   I2)   =  0    or    2I2  4I3 = 5 ...(iii) 
The matrix form of the above three simultaneous equations is 

 

3  1 0  x   2 3  1 0
3   9 4   y   5 ;   3  9 4 84  12  0  72 
0 2     4  z     5 0 2     4




2 1 0 3 2 0 3  1 2 
1      5    9 4  56; 2     3    5 4  24; 3  3  9  5   78 

5 2  4 0 5  4 0 2 5 

 I1 = 1/ = 56/72 = 7/9 A; I2 = 2/ = 24/72 = 1/3 A 
I3 = 3/ = 78/72 = 13/12 A 

The negative sign of I3 shows that it is flow- 
ing in a direction opposite to that shown in Fig. 
2.64 i.e. it flows in the CCW direction. The 
actual directions are as shown in Fig. 2.67. 

The various branch currents are as under : 
 

  

 
  I I 7/9 A; I BF I1 I2 

7 1 4 A 
AB 1 

IBC I2 
1 A;ICE 

 
 

9 3 

I I 1 13 
2 3   12 

9 
 

 

17 A 
12 

I I 13 A Fig. 2.67 
DC 3 12 

Solution by Using Mesh Resistance Matrix 

From inspection of Fig. 2.67, we have 

R11 = 9; R22 = 9; R33 = 8 

R12 = R21 = 3  ; R23 = R32 = 4 ; R13 = R31 = 0 
E1 = 6 V : E2 = 5 V; E3 = 10 V 
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R

 R11 R12 R13   I1   E1     9    3 0  I1   6R21 R22 R23 
 I2 

 = E2 
 or  3 9   4 I2 

   5  
31 R32 R33 

  I3 
  E3 

    0     4 8  I3 
  10

          
9  3 0 

  =  3 9  4  9(72  16)  3 ( 24)  432 
0    4 8 
6  3 0 

1 = 5 9  4 


 6(72  16)  5( 24)  10(12)  336 

9 6 0 
2 =  3 5  4  9 (40  40)  3(48)  144 

0    10 8 
9  3 6 

3 =  3 9 5  9( 90  90) – 3(30  24)   468 
0     4    10 

I1    =  1/ = 336/432 = 7/9 A 

I2    =  2/ = 144/432 = 1/3 A 

I3 = 3/ = 468/432 = 13/12 A 
These are the same values as found above. 

 

 Nodal Analysis with Current Sources 

Consider the network of Fig. 2.68 (a) which has two current sources and three nodes out of which 
1 and 2 are independent ones whereas No. 3 is the reference node. 

The given circuit has been redrawn for ease of understanding and is shown in Fig. 2.68 (b). The 
current directions have been taken on the assumption that 

1. both V1 and V2 are positive with respect to the reference node. That is why their respective 
curents flow from nodes 1 and 2 to node 3. 

2. V1 is positive with respect to V2 because current has been shown flowing from node 1 to 
node 2. 

A positive result will confirm out assumption whereas a negative one will indicate that actual 
direction is opposite to that assumed. 

Fig. 2.68 

We will now apply KCL to each node and use Ohm’s law to express branch currents in terms of 
node voltages and resistances. 

Node 1 

I1  I2  I3 = 0 or I1 = I2 + I3 

10  4 8 
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4

Example 2.36. Use nodal analysis method to find currents in the various resistors of the circuit 
shown in Fig. 2.69 (a). 

V 
Now I2   = 1 

R1 
 

and I   
V1   V2 

3 R3
 

 

 I = V1  
V1  V2 

 
  

or V 
 1  1  

 
V2  I 

 
 

...(i) 1 R1 R3 1  R R  R 1 

 
Node 2 

 

I3  I2  I4 = 0 or I3 = I2 + I4 

  1 3  3 

V 
Now, I = 2 

R2 
 

  

and 

 

I   
V1   V2

 

3  R3 
as before 

 
V1  V2 

 
 

= I  
V2 

 

or V 
 1  1  

 
V1   I 

 
 

...(ii) 
R3 

2 R2 
2  R R  R 1

 

   2 3  3 

The above two equations can also be written by simple inspection. For example, Eq. (i) is 
represented by 

1. product of potential V1 and (1/R1 +  R3) i.e. sum of the reciprocals of the branch resistances 
connected to this node. 

2. minus the ratio of adjoining potential V2 and the interconnecting resistance R3. 
3. all the above equated to the current supplied by the current source connected to this node. 

This current is taken positive if flowing into the node and negative if flowing out of it (as per sign 
convention of Art. 2.3). Same remarks apply to Eq. (ii) where I2 has been taken negative because it 
flows away from node 2. 

In terms of branch conductances, the above two equations can be put as 

V1  (G1  + G3) V2G3    =  I1     and V2  (G2  + G3) V1G3  = I2 

Solution. The given circuit is redrawn in Fig. 2.66 (b) with its different nodes marked 1, 2, 3 and 
4, the last one being taken as the reference or datum node. The different node-voltage equations are as 
under : 

 
 

 

1   2 2 10 




 

2 10 

Fig. 2.69 

2   2 5  2 1 
 
 

3   4 10 


 

1 10 

Node 1 V 
 1  1  1   

V2  
V3 = 8 

 

or 

Node 2 

or 

Node 3 

11V1  5V2  V3  280 

V 1  1  1   
V1    

V3 

5V1  17 V2  + 10 V3 

V  
 1  1  

1   
V2   

V1 

= 

= 

= 

= 

0 

0 

0 

 2 

...(i) 
 
 

...(ii) 
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Example 2.37. Using nodal analysis, find the different branch currents in the circuit of Fig. 
2.70 (a). All branch conductances are in siemens (i.e. mho). 

or V1  + 10 V2  13.5 V3  20   =  0 ...(iii) 
The matrix form of the above three equations is 

11  5  1  x  280
  5   17 10  y   0
  1 10     13.5  z    20
11  5  1 

  = 5  17 10  1424.5  387.5  67  970 
1 10  13.5 

280  5  1 11   280  1 
1 = 0    17 10    34, 920, 2  5 0 10  19, 400 

20 10  13.5 1 20  13.5 

3 = 
11  5   280 
5    17 0  15, 520 
1 10 20 

V = 
1  

34, 920  36 V, V 
 

 
2  

19, 400  20 V, V 
  

3  15, 520  16 V 
 

1  970 2  970 3  970 
It is obvious that all nodes are at a higher potential with respect to the datum node. The various 

currents shown in Fig. 2.69 (b) can now be found easily. 
I1 = V1/2 = 36/2 = 18 A 
I2 = (V1 V2)/2 = (36 20)/2 = 8 A 
I3 = (V1 V3)/10 = (36 16)/10 = 2 A 

It is seen that total current, as expected, is 18 + 8 + 2 = 28 A 
I4 = (V2 V3)/1 = (20 16)/1 = 4 A 
I5 = V2/5 = 20/5 = 4 A, I6 = V3/4 = 16/4 = 4 A 

Solution. Let the various branch currents be as shown in Fig. 2.70 (b). Using the procedure 
detailed in Art. 2.11, we have 

 

 
 

First Node 

Fig. 2.70 

V1  (1 + 2)  V2  × 1V3 ×   2 =    2    or    3V1  V2  2V3 = 2 ...(i) 
Second Node 

 
Third Node 

V2  (1 + 4) V1 × 1   =  5    or    V1   5V2  =  5 ...(ii) 

V3  (2 + 3) V1  × 2   =   5    or  2V1   5V3  = 5 ...(iii) 
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Example 2.38.  Find the current I in Fig. 2.72 (a) by 
changing the two voltage sources into their equivalent 

2 3 

V3 
 

Solving for the different voltages, we have 

V1 =  3 V, V  7  V and V    8 V 
2 10 5

I1 = (V1 V2) × 1 = (1.5 0.7) × 1 = 2.2 A 

I2 = (V3 V1) × 2 = [1.6 (1.5)] × 2 = 0.2 A 

I4 = V2 × 4 = 4 × (7/10) = 2.8 A 

I3 = 2 + 2.8 = 4.8 A 

As seen, I1 and I2 flow in directions opposite to those 
originally assumed (Fig. 2.71). 

 
 
 
 
 
 
 
 
 

Fig. 2.71 

 

 
Solution. The two voltage sources have been converted into their equivalent current sources in 

Fig. 2.72 (b). The circuit has been redrawn as shown in Fig. 2.72 (c) where node No. 4 has been 
 

Fig. 2.72 

taken as the reference node or common ground for all other nodes. We will apply KCL to the three 
nodes and taken currents coming towards the nodes as positive and those going away from them as 
negative. For example, current going away from node No. 1 is (V1 V2)/1 and hence would be taken 
as negative. Since 4 A current is coming towards node No. 1, it would be taken as positive but 5 A 
current would be taken as negative. 

Node 1 :  –  
(V1   0)  

(V1   V2)  
(V1   V3)  5  4  0 

1 1 1 
or 3  V1  V2  V3  = – 1 ................................................................................................ (i) 

 

` Node 2 :  
(V2  0)  

(V2  V3)  
(V2  V1)  5  3  0  

1 1 1 
or V1  3V2  +  V3 = 2 ...(ii) 

 

Node 3 :  
(V3  0)  

(V3  V1)   
(V3   V2)  4  3  0 

1 1 1 
or V1  + V2  3V3 = 1 ...(iii) 
The matrix form of the above three equations is 

 

3  1    1 V1    1
1   3 1  V2 

   2
1 1  3   1

current sources and then using Nodal method. All resistances are in ohms. 



 

Example 2.39. Use Nodal analysis to determine the value of current i in the 
2.73. 

 

 

Solution. We will apply KCL 
1 to the outgoing currents, we have

 

6 = 
V1  V2  

V

4 
As seen. i = V1/8. Hence, the above equation becomes

 

6   =   
V1   V2  

4 
or 3V1 V2 = 24 

Similarly, applying KCL to node No. 2, we get
 

 V1  V2  3 i = 
 

 
 V2 or 

 

V1  

4 6 
From the above two equations, we get

V1 = 16 V  i = 16/8 = 

  Example 2.40.  Using Nodal analysis, find the node voltages V

Solution. Applying KCL to node 1, we get
 

8  1  
V1  

(V1 

3 6 
or 3V1  

Similarly, applying KCL to node 2, we get
 

1  
(V1    V2)  

V2  
6 15 

or V1  
Solving for V1 and V2 from Eqn. 

 Source Conversion

A given voltage source with
current source with a parallel resistance. Conversely, a current source with a parallel resistance can 
be converted into a vaoltage source
source of Fig. 2.75 (a) into an equivalent current source. First, we will find the value of current 
supplied by the source when a ‘short’
current is I = V/R. 

A current source supplying
with it represents the equivalent source. It is shown in Fig. 2.75 (
and a parallel resistance R can 

DC Network Theorems

Use Nodal analysis to determine the value of current i in the network of Fig.

3  1    1 
  = 1    3 1  3(9  1)  13  1  1( 1  3) 

1 1    3 
3  1    1 

2 = 1    2 1  3(6  1)  13  1  1( 1  2) 
1 1     3 

 V2 = 2/ = 8/16 = 0.5 V 

 I = V2/1 = 0.5 A 

KCL to the two nodes 1 and 2. Equating the incoming currents at node 
1 to the outgoing currents, we have 

V1  3 i 
 8 

/8. Hence, the above equation becomes 

 
V1    3 

V1 

 8 8 

to node No. 2, we get 

V1   V2   3 
V1    

V2 
   

or 3V  2 V  Fig. 2.73 
 4 8 6 1 2 

From the above two equations, we get 

= 16/8 = 2 A. 

Using Nodal analysis, find the node voltages V1 and V2 in Fig. 2.74

to node 1, we get 
 V2) = 0 
 

1   V2   =  42 ...(i) 
to node 2, we get 

 
V2 =  0

 
 10 
 2V2   =  6 ...(ii) 

from Eqn. (i) and (ii), we get 

V1 = 18 V and V2 = 12 V. 

Conversion 

 
 

Fig. 2.74 

with a series resistance can be converted into (or replaced by) and
current source with a parallel resistance. Conversely, a current source with a parallel resistance can 

source with a series resistance. Suppose, we want to convert
) into an equivalent current source. First, we will find the value of current 

‘short’ is put across in termials A and B as shown in Fig. 2.75

supplying this current I and having the same resistance R connected
with it represents the equivalent source. It is shown in Fig. 2.75 (c). Similarly, a current source of 

 be converted into a voltage source of voltage V = IR and a
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network of Fig. 

3)  16 

2)  8 

to the two nodes 1 and 2. Equating the incoming currents at node 

2.74.  

and equivalent 
current source with a parallel resistance. Conversely, a current source with a parallel resistance can 

convert the voltage 
) into an equivalent current source. First, we will find the value of current 

2.75 (b). This 

connected in parallel 
). Similarly, a current source of I 

a resistance 
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Fig. 2.75 

R in series with it. It should be kept in mind that a voltage source-series resistance combination is 
equivalent to (or replaceable by) a current source-parallel resistance combination if, and only if their 

1. respective open-circuit voltages are equal, and 

2. respective short-circuit currents are equal. 

For example, in Fig. 2.75 (a), voltage across terminals A and B when they are open (i.e. open- 
circuit voltage VOC) is V itself because there is no drop across R. Short-circuit current across AB = I 
= V/R. 

Now, take the circuit of Fig. 2.75 (c). The open-circuit voltage across AB = drop across R = IR 
= V. If a short is placed across AB, whole of I passes through it because R is completely shorted out. 

  Example 2.41.  Convert the voltage source of Fig. 2.73 (a) into an equivalent current source.  

Solution. As shown in Fig 2.76 (b), current obtained by putting a short across terminals A and B 
is 10/5 = 2 A. 

Hence, the equivalent current source is as shown in Fig. 2.76 (c). 
 

Fig. 2.76 

Example 2.42. Find the equivalent volt- 
age source for the current source in Fig. 2.77 
(a). 

Solution. The open-circuit voltage across 
terminals A and B in Fig. 2.77 (a) is 

VOC = drop across R 
= 5 × 2 = 10 V 

Hence, voltage source has a voltage of 10 V 
and the same resistance of 2 through connected 
in series [Fig. 2.77 (b)]. 

 
 
 
 
 
 
 

Fig. 2.77 



   95  DC Network Theorems 
 

 

 
Solution. As shown in Fig. 2.78 (b). 6-V voltage source with a series resistance of 3 has been 

converted into an equivalent 2 A current source with 3  resistance in parallel. 

Fig. 2.78 

The two parallel resistances of 3  and 6  can be combined into a single resistance of 2  as 
shown in Fig. 2.79. (a) 

The two current sources cannot be combined together because of the 2  resistance present 
between points A and C. To remove this hurdle, we convert the 2 A current source into the equivalent 
4 V voltage source as shown in Fig. 2.79 (b). Now, this 4 V voltage source with a series resistance of 
(2 + 2) = 4  can again be converted into the equivalent current source as shown in Fig. 2.80 (a). 
Now, the two current sources can be combined into a single 4-A source as shown in Fig. 2.80 (b). 

Fig. 2.79 
 
 
 
 
 

 
   

 
 

Fig. 2.80 
 

The 4-A current is divided into two equal parts at point A because each of the two parallel paths 
has a resistance of 4 . Hence I1 = 2 A. 

Example 2.43. Use Source Conversion technique to find the load current I in the circuit of Fig. 
2.78 (a). 
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 

2 4 

Example 2.45. Replace the given network by a single current source in parallel with a resistance. 

[Bombay University 2001] 

 

 
Solution. The first thing is to convert the voltage source into the current sources as shown in 

Fig. 2.81 (b). Next, the two parallel resistances of 4  each can be combined to give a single resis- 
tance of 2  [Fig. 2.82 (a)]. Let the current directions be as indicated. 

 
 
 
 
 
 

 
   

 
 
 

Fig. 2.81 

Applying the nodal rule to nodes 1 and 2, we get 
Node 1 

1 2 5  5 1 2 
 
 

Node 2 
V 1  1  V2

= 5 or 7V 2V = 50 ...(i) 

 
 

V 1  1    
V1 

2  5 5 5 

 
=  1 or V1 

 
 2V2 

 
= 5 ...(ii) 

 
 

Solving for V1 and V2, we get V1  15 V and V2  5 V. 
 

 

I2 = 
V1       V2 15/2  5/4 

5  5 
1.25 A 

 

 
Fig. 2.82 

Similarly, I1 = V1/2 = 15/4 = 3.75 A; I3 = V2/5 = 5/20 = 0.25 A. 
The actual current distribution becomes as shown in Fig. 2.79 (b). 

Example 2.44. Calculate the direction and magnitude of the current through the 5  resistor 
between points A and B of Fig. 2.81 (a) by using nodal voltage method. 
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Solution. The equivalence is expected for 
a load connected to the right-side of terminals A 
and B. In this case, the voltage-source has no 
resistive element in series. While handling such 
cases, the 3-ohm resistor has to be kept aside, 
treating it as an independent and separate loop. 
This voltage source will circulate a current of 
20/3 amp in the resistor, and will not appear in 
the calculations. 

Fig. 2.83 (a) 

Fig. 2.83 (b) Fig. 2.83 (c) 

This step does not affect the circuit connected to AB. 

Further steps are shown in Fig. 2.83 (b) and (c) 
 

Tutorial Problems No. 2.3 
1.  Using Maxwell’s loop current method, calculate the output voltage Vo  for the circuits shown in   

Fig. 2.84. [(a) 4 V (b) - 150/7 V (c) Vo = 0 (d) Vo = 0] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2.84 
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2. Using nodal voltage method,

 

 
Fig. 2.85 

3. By using repeated source transformations, find the value of voltage 
 

 
  

 
 

 
 

4. Use  source transformation technique to find the current flowing through the 2 
(b). 

5. With the help of nodal analysis, calculate the values of nodal voltages 
Fig. 2.86. 

6. Use nodal analysis to find various branch currents in the circuit of Fig.

[Hint :  Check by source conversion.]

 

Fig. 2.88 

7. With the help of nodal analysis,

8. By applying nodal analysis to the circuit of Fig. 2.90, find 

ohms. 

Technology 

method, find the magnitude and direction of current I in the network

 

 Fig. 2.86 

By using repeated source transformations, find the value of voltage v in Fig. 2.87 (a). 

 
 

 

  

Fig. 2.87 

Use  source transformation technique to find the current flowing through the 2  resistor in 
 

With the help of nodal analysis, calculate the values of nodal voltages V1 and V2 in the circuit of 
 [7.1 

analysis to find various branch currents in the circuit of Fig. 2.88. 

source conversion.] [Iac = 2 A; Iab = 5 A, 

 Fig. 2.89 

analysis, find V1 and V2 and various branch currents in the network
[5 V,  2.5 V; Iac  = 2.5 A; Iab  = 0.5 A; 

By applying nodal analysis to the circuit of Fig. 2.90, find Iab, Ibd and Ibc. All resistance values are

 [Iab = 22 A, Ibd = 10 A, Ibc 
21 7 

[Hint. : It would be helpful to convert resistance into conductances.]

network of Fig. 2.85. 

 

 [8 V] 

 

resistor in Fig.  2.87 
 [10 A] 

in the circuit of 
[7.1 V;  3.96 V] 

= 5 A, Ibc = 0] 

network of Fig. 2.85. 
= 0.5 A; Ibc  = 2.5 A] 

All resistance values are in 

bc = 
 8 

A] 
 21 

to convert resistance into conductances.] 



 

 

9. Using nodal voltage method, compute the power dissipated in the
 

 

 

Fig. 2.90 

10. Write equilibrium equations
and V3.  All resistors in the network are of 

11. By applying nodal method
in Fig. 2.93. 

 

Fig. 2.92 

 Ideal Constant-Voltage

It is that voltage source (or generator) whose output voltage remains absolutely constant what
ever the change in load current.
internal voltage drop in the source
remain constant irrespective of the amount of current drawn from it
constant-voltage source can be obtained. However, smaller the internal resistance 
source, closer it comes to the ideal sources described

Suppose, a 6-V battery has
current i.e. it is on no-load, Vo =

DC Network Theorems

Using nodal voltage method, compute the power dissipated in the 9- resistor of Fig. 2.91.

  

 Fig. 2.91 

equations for the network in Fig. 2.92 on nodal basis and obtain the voltage
.  All resistors in the network are of  1 . [Network Theory and Fields, Madras

method of network analysis, find current in the 15 resistor of the network
 [3.5 A] [Elect. Technology-1, Gwalior

 Fig. 2.93 

Voltage Source 

It is that voltage source (or generator) whose output voltage remains absolutely constant what
current. Such a voltage source must possess zero internal resistance

source is zero. In that case, output voltage provided by the source
irrespective of the amount of current drawn from it. In practice, none such ideal 

voltage source can be obtained. However, smaller the internal resistance r of a voltage 
source, closer it comes to the ideal sources described above. 

Fig. 2.94 

has an internal resistance of 0.005 [Fig. 2.94 (a)]. When it
= 6 V i.e. output voltage provided by it at its output terminals
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resistor of Fig. 2.91. [81 W] 

voltage V1, V2 

Theory and Fields, Madras Univ.] 
network shown 

1, Gwalior Univ.] 

 

It is that voltage source (or generator) whose output voltage remains absolutely constant what- 
resistance so that 

source would 
. In practice, none such ideal 

of a voltage 

it supplies no 
terminals A and B 
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is 6 V. If load current increases to 100 A, internal drop = 100 × 0.005 = 0.5 V. Hence, Vo = 6 0.5 
= 5.5 V. 

Obviously an output voltage of 5.5  6 V can be considered constant as compared to wide 
variations in load current from 0 A ot 100 A. 

 Ideal Constant-Current Source 

It is that voltage source whose internal resistance is infinity. In practice, it is approached by a 
source which posses very high resistance as compared to that of the external load resistance. As 
shown in Fig. 2.94 (b), let the 6-V battery or voltage source have an internal resistance of 1 M  and 
let the load resistance vary from 20 K to 200 K. The current supplied by the source varies from 
6.1/1.02 = 5.9  A to 6/1.2 = 5  A. As seen, even when load resistance increases 10 times, current 
decreases by 0.9 A. Hence, the source can be considered, for all practical purposes, to be a constant- 
current source. 

 

 Superposition Theorem 
 

Fig. 2.95 

According to this theorem, if there are a number of e.m.fs. acting simultaneously in any linear 
bilateral network, then each e.m.f. acts independently of the others i.e. as if the other e.m.fs. did not 
exist. The value of current in any conductor is the algebraic sum of the currents due to each e.m.f. 
Similarly, voltage across any conductor is the algebraic sum of the voltages which each e.m.f would 
have produced while acting singly. In other words, current in or voltage across, any conductor of the 
network is obtained by superimposing the currents and voltages due to each e.m.f. in the network. It 
is important to keep in mind that this theorem is applicable only to linear networks where current is 

linearly related to voltage as per Ohm’s law. 

Hence, this theorem may be stated as follows : 
In a network of linear resistances containing more 
than one generator (or source of e.m.f.), the cur- 
rent which flows at any point is the sum of all the 
currents which would flow at that point if each 
generator where considered separately and all the 
other generators replaced for the time being by 
resistances equal to their internal resistances. 

Explanation 

Fig. 2.96 In Fig. 2.95 (a) I1, I2 and I represent the values of 
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Example 2.46. In Fig. 2.95 (a) let battery e.m.fs. be 6 V and 12 V, their internal resistances 
0.5  and 1 . The values of other resistances are as indicated. Find the different currents flowing in 
the branches and voltage across 60-ohm resistor. 

Example 2.47. By using Superposition Theorem, find the current in resistance R shown in Fig. 
2.97 (a) 

R1 = 0.005 , R2 = 0.004 , R = 1 , E1 = 2.05 V, E2 = 2.15 V 

Internal resistances of cells are negligible. (Electronic Circuits, Allahabad Univ. 1992) 

currents which are due to the simultaneous action of the two sources of e.m.f. in the network. In Fig. 
2.95 (b) are shown the current values which would have been obtained if left-hand side battery had 
acted alone. Similarly, Fig. 2.96 represents conditions obtained when right-hand side battery acts 
alone. By combining the current values of Fig. 2.95 (b) and 2.96 the actual values of Fig. 2.95 (a) can 
be obtained. 

Obviously, I1 = I1  I1  , I2 = I2   I2´, I = I  + I  . 

Solution. In Fig. 2.95 (b), 12-volt battery has been removed though its internal resistance of  
1  remains. The various currents can be found by applying Ohm’s Law. 

It is seen that there are two parallel paths between points A and B, having resistances of 6 and 
(2 + 1) = 3 . 

   equivalent resistance = 3 || 6 = 2 

Total resistance =  0.5 + 2.5 + 2 = 5       I1  = 6/5 = 1.2 A. 
This current divides at point A inversely in the ratio of the resistances of the two parallel paths. 

 I    =  1.2 × (3/9) = 0.4 A.    Similarly, I2  = 1.2 × (6/9) = 0.8 A 
In Fig. 2.96, 6 volt battery has been removed but not its internal resistance. The various currents 

and their directions are as shown. 

The equivalent resistance to the left to points A and B is = 3 || 6 = 2 
    total resistance =   1 + 2 + 2 = 5       I2   = 12/5 = 2.4 A 
At point A, this current is divided into two parts, 

I    =  2.4 × 3/9 = 0.8 A,    I1   = 2.4 × 6/9 = 1.6 A 
The actual current values of Fig. 2.95 (a) can be obtained by superposition of these two sets of 

current values. 

 I1    =  I1  I1   = 1.2 1.6 = 0.4 A (it is a charging current) 
I2    =  I2    I2  = 2.4 0.8 = 1.6 A 
I   =  I  + I   = 0.4 + 0.8 = 1.2 A 

Voltage drop across 6-ohm resistor = 6 × 1.2 = 7.2 V 

Solution. In Fig. 2.97 (b), E2 has been removed. Resistances of 1  and 0.04  are in parallel 
across poins A and C. RAC = 1 || 0.04 = 1 × 0.04/1.04 = 0.038 . This resistance is in series with 
0.05 . Hence, total resistance offered to battery E1 = 0.05 + 0.038 = 0.088 . I = 2.05/0.088 = 23.3 
A. Current through 1- resistance, I1 = 23.3 × 0.04/1.04 = 0.896 A from C to A. 

When E1  is removed, circuit becomes as shown in Fig. 2.97 (c).  Combined resistance of paths 
CBA and CDA is = 1 || 0.05 = 1 × 0.05/1.05 = 0.048 .  Total resistance offered to E2 is = 0.04 + 0.048 
= 0.088 . Current I = 2.15/0.088 = 24.4 A. Again, I2 = 24.4 × 0.05/1.05 = 1.16 A. 

To current through 1- resistance when both batteries are present 

=  I1  + I2  = 0.896 + 1.16 = 2.056 A. 
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Fig. 2.97 

 
 

Solution. In Fig. 2.98 (b), the voltage source has been replaced by a short and the 40 A current 
sources by an open. Using the current-divider rule, we get I1 = 120 × 50/200 = 30 A. 

In Fig. 2.98 (c), only 40 A current source has been considered. Again, using current-divider rule 
I2 = 40 × 150/200 = 30 A. 

In Fig. 2.98 (d), only voltage source has been considered. Using Ohm’s law, 

I3    =  10/200 = 0.05 A. 
Since I1 and I2 cancel out, I = I3 = 0.005 A. 

Fig. 2.98 

 
Solution. As seen, there are three independent sources and one dependent source. We will find 

the value of v produced by each of the three independent sources when acting alone and add the three 
values to find v. It should be noted that unlike independent source, a dependent source connot be set 
to zero i.e. it cannot be ‘killed’ or deactivated. 

Let us find the value of v1 due to 30 V source only. For this purpose we will replace current 
source by an open circuit and the 20 V source by a short circuit as shown in Fig. 2.99 (b). Applying 
KCL to node 1, we get 

(30  v1)  
v1  

(v1/3  v1) 
6 3 2 

=  0    or v1 = 6 V 

Let us now keep 5 A source alive and ‘kill’ the other two independent sources. Again applying 
KCL to node 1, we get, from Fig. 2.99 (c). 

Example 2.49. Use superposition theorem to determine the voltage v in the network of Fig. 
2.99(a). 

Example 2.48. Use Superposition theorem to find current I in the circuit shown in Fig. 2.98 (a). 
All resistances are in ohms. (Basic Circuit Analysis Osmania Univ. Jan/Feb 1992) 
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3

 

 Fig. 2.99 
v2  5  

v2  
(v2/3  v2) 

6 3 2 = 0 or v2 = 6 V 

Let us now ‘kill’ 30 V source and 5 A source and find v3 
due to 20 V source only. The two parallel resistances of 6  
and 3  can be combined into a single resistance of 2 . 
Assuming a circulating current of i and applying KVL to the 
indicated circuit, we get, from Fig. 2.100. 

 2i  20  2i  1 ( 2i) = 0 or i = 6 A 

Hence, according to Ohm’s law, the component of v that 
corresponds to 20 V source is v3 = 2 × 6 = 12 V. v = v1 

+ v2 + v3 = 6 6 + 12 = 12 V. 

 
 
 
 
 
 
 
 
 

Fig. 2.100 

 
Solution. We will first consider when 50 V battery acts alone and afterwards when 10-V battery 

is alone in the circuit. When 10-V battery is replaced by short-circuit, the circuit becomes as shown 
in Fig. 2.101 (b). It will be seen that the right-hand side 5  resistor becomes connected in parallel 
with 40 resistor giving a combined resistance of 5 || 40 = 4.44 as shown in Fig. 101 (c). This 4.44  
resistance is in series with the left-hand side resistor of 5  giving a total resistance of (5 + 
4.44) = 9.44 . As seen there are two resistances of 20  and 9.44  connected in parallel.  In Fig. 
2.101 (c) current I = 50/9.44 = 5.296 A. 

Fig. 2.101 

At point A in Fig. 2.101 (b) there are two resistances of 5  and 40  connected in parallel, 
hence, current I divides between them as per the current-divider rule. If I1 is the current flowing 
through the 40  resistor, then 

Example 2.50. Using Superposition theorem, find the current through the 40 W resistor of the 
circuit shown in Fig. 2.101 (a). (F.Y. Engg. Pune Univ. May 1990) 
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Example 2.51.  Solve for the power delivered to the 10  resistor in the circuit shown in Fig. 
2.103 (a).  All resistances are in ohms. (Elect. Science - I, Allahabad Univ. 1991) 

Example 2.52. Compute the power dissipated in the 9-W resistor of Fig. 2.104 by applying the 
Superposition principle. The voltage and current sources should be treated as ideal sources. All 
resistances are in ohms. 

 
I = I 

    5  5.296  5 
0.589 A. 

1 

 
In Fig. 2.102 (a), 10 V battery acts 

alone because 50-V battery has been re- 
moved and replaced by a short-circuit. 

As in the previous case, there are two 
parallel branches of resistances 20  and 
9.44  across the 10-V battery. Current I 
through  9.44   branch  is  I  =  10/9.44 = 
1.059 A. This current divides at point B 
between 5  resistor and 40  resistor. 
Current through 40  resistor I2 = 1.059 × 
5/45 = 0.118 A. 

5   40 45 
 
 
 
 
 
 
 
 
 

Fig. 2.102 

According to the Superposition theorem, total current through 40  resistance is 

= I1 + I2 = 0.589 + 0.118 = 0.707 A. 

Solution. The 4-A source and its parallel resistance of 15  can be converted into a voltage 
source of (15 × 4) = 60 V in series with a 15  resistances as shown in Fig. 2.103 (b). 

Now, we will use Superposition theorem to find current through the 10  resistances. 

When 60 V Source is Removed 
When 60 V battery is removed 

the total resistance as seen by 2 V bat- 
tery is = 1 + 10 || (15 + 5) = 7.67 . 

The battery current = 2/7.67 A 
= 0.26 A. At point A, this current is 
divided into two parts. The current 
passing  through  the  10   resistor 
from A to B is 

I1 = 0.26 × (20/30) = 0.17 A 
When 2-V Battery is Removed 

Fig. 2.103 

Then resistance seen by 60 V battery is = 20 + 10 || 1 = 20.9 .  Hence, battery current = 60/20.9 
= 2.87 A.  This current divides at point A.  The current flowing through 10  resistor from A to B is 

I2    =  2.87 × 1/(1 + 10) = 0.26 A 
Total current through 10  resistor due to two batteries acting together is = I1 + I2 = 0.43 A. 
Power delivered to the 10  resistor = 0.432 × 10 = 1.85 W. 

Solution. As explained earlier, an ideal constant-voltage sources has zero internal resistances 
whereas a constant-current source has an infinite internal resistance. 
(i) When Voltage Source Acts Alone 

This case is shown is in Fig. 2.104 (b) where constant-current source has been replaced by an 
open-circuit i.e. infinite resistance (Art. 2.16). Further circuit simplification leads to the fact that total 
resistances offered to voltage source is = 4 + (12 || 15) = 32/3  as shown in FIg. 2.104 (c). 
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Example 2.53(a). With the help of superposition theorem, obtain the value of current I and 
voltage V0 in the circuit of Fig. 2.106 (a). 

Hence current = 32 ÷ 32/3 = 3 A. At point A in Fig. 2.104 (d), this current divides into two parts. 
The part going alone AB is the one that also passes through 9  resistor. 

I    =  3 × 12/(15 + 12) = 4/3 A 

 
(ii) When Current Source Acts Alone 

Fig. 2.104 

As shown in Fig. 2.105 (a), the voltage source has been replaced by a short-circuit (Art 2.13). 
Further simplification gives the circuit of Fig. 2.105 (b). 

 

Fig. 2.105 

The 4 - A current divides into two equal parts at point A in Fig. 2.105 (b). Hence I = 4/2 = 2 A. 
Since both I  and I   flow in the same direction, total current through 9-resistor is 

I = I + I     =  (4/3) + 2 = (10/3) A 

Power dissipated in 9  resistor = I2 R = (10/3)2 × 9 = 100 W 

Solution. We will solve this question in three steps. First, we will find the value of I and V0 when 
current source is removed and secondly, when voltage source is removed. Thirdly, we would com- 
bine the two values of I and V0 in order to get their values when both sources are present. 
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Example 2.53(b). Using Superposition theo- 
rem, find the value of the output voltage V0 in the 
circuit of Fig. 2.107. 

First Step 

As shown in Fig. 2.106 (b), current source has been replaced by an open-circuit. Let the values 
of current and voltage due to 10 V source be I1 and V01. As seen I1 = 0 and V01 = 10 V. 
Second Step 

As shown in Fig. 2.106 (c), the voltage source has been replaced by a short circuit. Here 

I2 = 5 A and V02 = 5 × 10 = 50 V. 

 
 

Third Step 

Fig. 2.106 

By applying superposition theorem, we have 

I   =  I1  + I2  = 0 + (5) = 5  A 
V0    =  V01  + V02  = 10 + 50 = 60 V 

 
 
 

Solution. As usual, we will break down the 
problem into three parts involving one source each. 

(a) When 4 A and 6 V sources are killed* 

As shown in Fig. 2.108 (a), 4 A source has 
been replaced by an open circuit and 6 V source by 
a short-circuit. Using the current-divider rule, we 
find current i1 through the 2 resistor = 6 × 1/(1 + 
2 + 3) = 1 A  V01 = 1 × 2 = 2 V. 

(b) When 6 A and 6 V sources are killed 

As shown in Fig. 2.108 (b), 6 A sources has 

 
 
 
 
 
 
 
 
 
 

 
Fig. 2.107 

been replaced by an open-circuit and 6 V source by a short-circuit. The current i2 can again be found 
with the help of current-divider rule because there are two parallel paths across the current source. 
One has a resistance of 3  and the other of (2 + 1) = 3 . It means that current divides equally at 
point A. 

Hence, i2 = 4/2 = 2 A  V02 = 2 × 2 = 4 V 
(c) When 6 A and 4 A sources are killed 
As shown in Fig. 2.108 (c), drop over 2 resistor = 6 × 2/6 = 2 V. The potential of point B with 

respect to point A is = 6 2 = + 4 V. Hence , V03 = 4 V. 

 
* The process of setting of voltage source of zero is called killing the sources. 
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According to Superposition theorem, we have 
V0 = V01 + V02 + V03 = 2 + 4 4 = 2 V 

Fig. 2.108 

        Example 2.54.  Use Superposition theorem, to find the voltage V in Fig. 2.109 (a).  
 

Fig. 2.109 

Solution. The given circuit has been redrawn in Fig. 2.109 (b) with 15 - V battery acting alone 
while the other two sources have been killed. The 12 - V battery has been replaced by a short-circuit 
and the current source has been replaced by an open-circuit (O.C) (Art. 2.19). Since the output 
terminals are open, no current flows through the 4  resistor and hence, there is no voltage drop 
across it. Obviously V1 equals the voltage drop over 10  resistor which can be found by using the 
voltage-divider rule. 

V1 = 15 × 10/(40 + 10) = 3 V 
Fig. 2.110 (a) shows the circuit when current source acts alone, while two batteries have been 

killed. Again, there is no current through 4  resistor. The two resistors of values 10  and 40 are 

Fig. 2.110 

in parallel across the current source. Their combined resistances is 10 || 40 = 8 
 V2 = 8 × 2.5 = 20 V with point A positive. 
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Example 2.55. Apply Superposition theorem to the circuit of Fig. 2.107 (a) for finding the 
voltage drop V across the 5  resistor. 

Fig. 2.110 (b) shows the case when 12 V battery acts alone. Here, V3 = 12 V*. Minus sign has 
been taken because negative terminal of the battery is connected to point A and the positive terminal 
to point B. As per the Superposition theorem, 

V = V1 + V2 + V3 = 3 + 20 12 = 11 V 

Solution. Fig. 2.111 (b) shows the redrawn circuit with the voltage source acting alone while the 
two current sources have been ‘killed’ i.e. have been replaced by open circuits. Using voltage- 
divider principle, we get 

V1 = 60 × 5/(5 + 2 + 3) = 30 V. It would be taken as positive, because current through the 5  
resistances flows from A to B, thereby making the upper end of the resistor positive and the lower end 
negative. 

Fig. 2.111 

Fig. 2.112 (a) shows the same circuit with the 6 A source acting alone while the two other sources 
have been ‘killed’. It will be seen that 6 A source has to parallel circuits across it, one having a 
resistance of 2  and the other (3 + 5) = 8 . Using the current-divider rule, the current through the 5 
 resistor = 6 × 2/(2 + 3 + 5) = 1.2 A. 

 

Fig. 2.112 
 

* Because Fig. 2.110 (b) resembles a voltage source with an internal resistance = 4 + 10 || 40 = 12  and 
which is an open-circuit. 
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2  4 
2  4 

 V2 = 1.2 × 5 = 6 V. It would be taken negative because current is flowing from B to A. i.e. 
point B is at a higher potential as compared to point A. Hence, V2 = 6 V. 

Fig. 2.112 (b) shows the case when 2-A source acts alone, while the other two sources are dead. 
As seen, this current divides equally at point B, because the two parallel paths have equal resistances 
of 5 each. Hence, V3 = 5 × 1 = 5 V. It would also be taken as negative because current flows from 
B to A. Hence, V3 = 5 V. 

Using Superposition principle, we get 

V = V1 + V2 + V3 = 30 6 5 = 19 V 

 
 

 
Fig. 2.113 (a) Fig. 2.113 (b) 

Solution. Superposition theorem needs one source acting at a time. 

Step I : De-acting current source. 

The circuit is redrawn after this change in Fig. 2.113 (b) 
I1   =

  10    10     2.059 amp 

2  
 4x (8  2) 
4  (8  2) 

2  40 
14 

I = 
2.059 10 

1.471 amp, in downward direction 
2 14 

Step II :   De-activate the voltage source. 

The circuit is redrawn after the change, in Fig. 2.113 (c) 

With the currents marked as shown. 

Id = 2Ic relating the voltage drops in Loop ADC. 

Fig. 2.113 (c) 

Thus Ib = 3 Ic. 
Resistance of parallel combination of 

2 and 4 ohms =  1.333 

Resistance for flow of Ib = 8 + 1.333 = 9.333 

Example 2.56. (b) Determine using superposition theorem, the voltage across the 4 ohm resis- 
tor shown in Fig. 2.113 (a) [Nagpur University, Summer 2000] 
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The 5-amp current from the sources gets divided into Ib (= 3 Ic) and Ia, at the node F. 
  2.0  5  0.8824 
2.0  9.333 

 Ic = 0.294 amp, in downward direction. 
Step III. Apply superposition theorem, for finding the total current into the 4-ohm reistor 

= Current due to Current source + Current due to Voltage source 

= 0.294 + 1.471 = 1.765 amp in downward direction. 

Check. In the branch AD, 

The voltage source drives a current from A to D of 2.059 amp, and the current source drives a 
current of Id (= 2Ic) which is 0.588 amp, from D to A. 

The net current in branch AD 
=   2.059 0.588 = 1.471 amp ...eqn. (a) 

With respect to O, A is at a potential of + 10 volts. 

Potential of D with respect to O 

= (net current in resistor) × 4 

= 1.765 × 4 = + 7.06 volts 

Between A and D, the potential difference is (10 7.06) volts 
Hence, the current through this branch 

= 
10  7.06  1.47 amp from A to D 

2 

This is the same as eqn. (a) and hence checks the result, obtained previously. 

 
...eqn (b) 

 

 
Solution. As shown in Fig. 2.114 (b), one source is de-activated. Through series-parallel combina- 

tions of resistances, the currents due to this source are calculated. They are marked as on Fig. 2.114 (b). 

Fig. 2.114 (a) Fig. 2.114 (b) 

 
Fig. 2.114 (c) 

Example 2.57. Find the current flowing in the branch XY of the circuit shown in Fig. 2.114 (a) 
by superposition theorem. [Nagpur University, April 1996] 

Ib    =  3 I  =c 
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Example 2.58. Find the currents in all the resistors by Superposition theorem in the circuit 
shown in Fig. 2.115 (a).  Calculate the power consumed. [Nagpur University, Nov. 1996] 

In the next step, second source is de-activated as in Fig. 2.114 (c). Through simple series parallel 
resistances combinations, the currents due to this source are marked on the same figure. 

According to the superposition theorem, the currents due to both the sources are obtained after 
adding the individual contributions due to the two sources, with the final results marked on Fig. 2.114 
(a). Thus, the current through the branch XY is 1.33 A from Y to X. 

 
 

Solution. According to Superposition theorem, one source should be retained at a time, 
deactivating remaining sources. Contributions due to individual sources are finally algebraically 
added to get the answers required. Fig. 2.115 (b) shows only one source retained and the resultant 
currents in all branches/elements. In Fig. 2.115 (c), other source is shown to be in action, with 
concerned currents in all the elements marked. 

To get the total current in any element, two component-currents in Fig. 2.115 (b) and Fig. 2.115 
(c) for the element are to be algebraically added. The total currents are marked on Fig. 2.115 (a). 

 

Fig. 2.115 (a) Fig. 2.115 (b) 

All resistors are in ohms 

Fig. 2.115 (c) 

Power loss calculations. (i) from power consumed by resistors : 

Power = (0.71472 × 4) + (3.5722 × 2)+(2.8752 × 8) = 92.86 watts 

(ii) From Source-power. 

Power = 10 × 3.572 + 20 × 2.857 = 92.86 watts 
 

Tutorial Problems No. 2.4. 

1. Apply the principle of Superposition to the network shown in Fig. 2.116 to find out the current in the 
10  resistance. [0.464 A] (F.Y. Engg. Pune Univ.) 

2. Find the current through the 3  resistance connected between C and D Fig. 2.117. 

[1 A from C to D] (F.Y. Engg. Pune Univ.) 
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Fig. 2.116 Fig. 2.117 Fig. 2.118 

3. Using the Superposition theorem, calculate the magnitude and direction of the current through each 
resistor in the circuit of Fig. 2.118. [I1 = 6/7 A; I2 = 10/7 A; I3 = 16/7 A] 

4. For the circuit shown in Fig. 2.119 find the 
current in R = 8  resistance in the branch AB 
using superposition theorem. 

[0.875 A] (F.Y. Engg. Pune Univ. ) 

5. Apply superposition principle to compute 
current in the 2- resistor of Fig. 2.120. All 
resistors are in ohms. [Iab = 5 A] 

6. Use Superposition theorem to calculate the volt-       
age drop across the 3  resistor of Fig. 2.121. 
All resistance values are in ohms. [18 V] Fig. 2.119 

 
 
 
 
 
 
 
 
 

Fig. 2.120 Fig. 2.121 

7. With the help of Superposition theorem, compute the current Iab in the circuit of Fig. 2.122. All 
resistances are in ohms. 

[Iab = 3 A] 

 
 
 
 
 
 
 

Fig. 2.122 Fig. 2.123 

8. Use Superposition theorem to find current Iab in the circuit of Fig. 2.123. All resistances are in 
ohms. 

[100 A] 

9. Find the current in the 15  resistor of Fig. 2.124 by using Superposition principle. Numbers 
represent resistances in ohms. [2.8 A] 
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R1 R2 A The Thevenin 
voltage e is the open 
circuit voltage at 
terminals A and B 

A

r 

V1 R 
VAB 

3 open 

Thevenin 

e+ equivalent 
circuit 

circuit 
The Thevenin 
resistance r is the 
resistance seen at 
AB with all voltage 

B sources replaced by 
short circuits and all 
current sources 
replaced by open 
circuits. 

– 
B

Thevenin Theorem 

 

 

 Thevenin Theorem 
 

 
It provides a mathematical technique for replacing a given network, as viewed from two output 

terminals, by a single voltage source with a series resistance. It makes the solution of complicated 
networks (particularly, electronic networks) quite quick and easy. The application of this extremely 
useful theorem will be explained with the help of the following simple example. 

 

Fig. 2.127 

Fig. 2.126 Fig. 2.125 Fig. 2.124 

10. Use Superposition principle to find current in the 10- resistor of Fig. 2.125. All resistances are in 
ohms. [1 A] 

11. State and explain Superposition theorem. For the circuit of Fig. 2.126. 

(a) determine currents I1, I2 and I3 when switch S is in position b. 
(b) using the results of part (a) and the principle of superposition, determine the same currents with 

switch S in position a. 

[(a) 15 A, 10 A, 25 A (b) 11 A , 16 A, 27 A] (Elect. Technology Vikram Univ.) 
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Suppose, it is required to find current flowing through load resistance 
RL, as shown in Fig. 2.127 (a). We will proceed as under : 

1. Remove RL from the circuit terminals A and B and redraw the cir- 
cuit as shown in Fig. 2.127 (b). Obviously, the terminals have 
become open-circuited. 

2. Calculate the open-circuit voltage Voc which appears across termi- 
nals A and B when they are open i.e. when RL is removed. 
As seen, Voc = drop across R2 = IR2 where I is the circuit current 
when A and B are open. 

I =
  E  

R1     R2    r  Voc = IR2 = 
ER2 

 

R1  R2  r 
[r is the internal 

resistance of battery] 
It is also called ‘Thevenin voltage’ Vth. 

3. Now, imagine the battery to be removed from the circuit, leaving its internal resistance r 
behind and redraw the circuit, as shown in Fig. 2.127 (c). When viewed inwards from 
terminals A and B, the circuit consists of two parallel paths : one containing R2 and the other 
containing (R1 + r). The equivalent resistance of the network, as viewed from these termi- 
nals is given as 

 
 

This resistance is also called,* Thevenin resistance Rsh (though, it is also sometimes 
written as Ri or R0). 

Consequently, as viewed from terminals A and 
B, the whole network (excluding R1) can be reduced 
to a single source (called Thevenin’s source) whose 
e.m.f. equals V (or Vsh) and whose internal resis- 
tance equals Rsh (or Ri) as shown in Fig. 2.128. 

4. RL is now connected back across terminals A and B 
from where it was temporarily removed earlier. 
Current flowing through RL is given by 

 
 

It is clear from above that any network of resistors and 
Fig. 2.128 

voltage sources (and current sources as well) when viewed from any points A and B in the network, 
can be replaced by a single voltage source and a single resistance** in series with the voltage source. 

After this replacement of the network by a single voltage source with a series resistance has been 
accomplished, it is easy to find current in any load resistance joined across terminals A and B. This 
theorem is valid even for those linear networks which have a nonlinear load. 

Hence, Thevenin’s theorem, as applied to d.c. circuits, may be stated as under : 
The current flowing through a load resistance RL connected across any two terminals A and 

B of a linear, active bilateral network is given by Voc || (Ri + RL) where Voc is the open-circuit 
voltage (i.e. voltage across the two terminals when RL is removed) and Ri is the internal resistance 
of the network as viewed back into the open-circuited network from terminals A and B with all 
voltage sources replaced by their internal resistance (if any) and current sources by infinite 
resistance. 
* After the French engineer M.L. Thevenin (1857-1926) who while working in Telegraphic Department 

published a statement of the theorem in 1893. 
** Or impedance in the case of a.c. circuits. 

Vth 

I = Rth  RL 

R = R2 || (R1 + r) = 
2 1 

R2  (R1  r) 

R (R  r) 

 
 
 
 
 
 
 
 
 
 
 
 

M. L. Thevenin 
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Example 2.59. Convert the circuit shown in Fig. 2.129 (a), to a single voltage source in series 
with a single resistor. (AMIE Sec. B, Network Analysis Summer 1992) 

Example 2.60. State Thevenin’s theorem and give a proof. Apply this theorem to calculate the 
current through the 4  resistor of the circuit of Fig. 2.130 (a). 

(A.M.I.E. Sec. B Network Analysis W.) 

 How to Thevenize a Given Circuit ? 

1. Temporarily remove the resistance (called load resistance RL) whose current is required. 
2. Find the open-circuit voltage Voc which appears across the two terminals from where 

resistance has been removed. It is also called Thevenin voltage Vth. 
3. Compute the resistance of the whose network as looked into from these two terminals after 

all voltage sources have been removed leaving behind their internal resistances (if any) and 
current sources have been replaced by open-circuit i.e. infinite resistance. It is also called 
Thevenin resistance Rth or Ti. 

4. Replace the entire network by a single Thevenin source, whose voltage is Vth or Voc and 
whose internal resistance is Rth or Ri. 

5. Connect RL back to its terminals from where it was previously removed. 
6. Finally, calculate the current flowing through RL by using the equation, 

I   =  Vth/(Rth + RL) or I = Voc/(Ri + RL) 

Solution. Obviously, we have 
to find equivalent Thevenin circuit. 
For this purpose, we have to cal- 
culate (i) Vth or VAB and (ii) Rth or 
RAB. 

With terminals A and B open, 
the two voltage sources are 
connected in subtractive series 
because they oppose each other. 
Net voltage around the circuit is 
(15 10) = 5 V and total resistance 
is (8 + 4) = 12 . Hence circuit 
current is = 5/12 A. Drop across 4 
 resistor = 4  5/12 = 5/3 V with 
the polarity as shown in Fig. 2.129 (a). 

 
 
 
 
 
 
 
 
 

Fig. 2.129 

 VAB = Vth = + 10 + 5/3 = 35/3 V. 

Incidently, we could also find VAB while going along the parallel route BFEA. 
Drop across 8  resistor = 8  5/12 = 10/3 V. VAB equal the algebraic sum of voltages met on the 

way from B to A. Hence, VAB = (10/3) + 15 = 35/3 V. 
As shown in Fig. 2.129 (b), the single voltage source has a voltage of 35/3 V. 

For finding Rth, we will replace the two voltage sources by short-circuits. In that case, Rth = RAB 

= 4 || 8 = 8/3 . 

Solution. As shown in Fig. 2.130 (b), 4  resistance has been removed thereby open-circuiting 
the terminals A and B. We will now find VAB and RAB which will give us Vth and Rth respectively. The 
potential drop across 5  resistor can be found with the help of voltage-divider rule. Its value is 
= 15  5/(5 + 10) = 5 V. 
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Fig. 2.130 

For finding VAB, we will go from point B to point A in the clock- 
wise direction and find the algebraic sum of the voltages met on the 
way. 

 VAB =  6 + 5 =  1 V. 

It means that point A is negative with respect to point E, or point 
B is at a higher potential than point A by one volt. 

In Fig. 2.130 (c), the two voltage source have been short- 
circuited. The resistance of the network as viewed from points A and 
B is the same as viewed from points A and C. 

 RAB = RAC = 5 || 10 = 10/3 
Thevenin’s equivalent source is shown in Fig. 2.131 in which 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.131 

 resistor has been joined back across terminals A and B. Polarity of the voltage source is worth 
nothing. 

 I  =   1  3  0.136 A 
(10/3)  4  22 

From E to A 
 

 
Solution. (i) Current in the network before load resistance is connected [Fig. 2.132 (a)] 

=  24/(12 + 3 + 1) = 1.5 A 

 voltage across terminals AB = Voc = Vth = 12  1.5 = 18 V 

Hence, so far as terminals A and B are concerned, the network has an e.m.f. of 18 volt (and not 
24 V). 

(ii) There are two parallel paths between points A and B. Imagine that battery of 24 V is removed 
but not its internal resistance. Then, resistance of the circuit as looked into from point A and B is 
[Fig. 2.132 (c)] 

Ri   =  Rth = 12   4/(12 + 4) = 3 
(iii) When load resistance of 15  is connected across the terminals, the network is reduced to 

the structure shown in Fig. 2.132 (d). 

Example 2.61. With reference to the network of Fig. 2.132 (a), by applying Thevenin’s theorem 
find the following : 

(i) the equivalent e.m.f. of the network when viewed from terminals A and B. 

(ii) the equivalent resistance of the network when looked into from terminals A and B. 

(iii) current in the load resistance RL of 15 . (Basic Circuit Analysis, Nagpur Univ. 1993) 



 

Example 2.62. Using Thevenin
of Fig. 2.133 (a). 

 

Solution. (i) Finding Vth 

If we remove the 4- resistor, the circuit becomes as shown in Fig. 2.133 (
current passes through 2  resistor,
the common ground. The two 
Hence, drop across 6  resistor = 12 

 

 
 

 
(ii) Finding Rth 

Now, we will find Rth i.e. 
network as looked back into the
B. For this purpose, we will replace
sources. Since voltage source has
be replaced by a short circuit 
current source would be removed
i.e. infinite resistance (Art. 1.18). In that case, the circuit 
becomes as shown in Fig. 2.133 (
(d), Fth = 6 || 3 + 2 = 4  Hence,
consists of a voltage source of 12
 as shown in Fig. 2.134 (a). When 4 
across terminals A and B, as shown in Fig. 2.134 (

I = 12/(4 + 4) = 1.5 A

* Also, VA = 12 drop across 3

DC Network Theorems

Thevenin theorem, calculate the current flowing through the 4

Fig. 2.132 

I = Vth/(Rth + RL) = 18/(15 + 3) = 1 A 

 

resistor, the circuit becomes as shown in Fig. 2.133 (b). Since full 10 
resistor, drop across it is 10  2 = 20 V. Hence, VB = 20 V with

 resistors of 3  and 6  are connected in series across the 12
resistor = 12  6/(3 + 6) = 8 V. 

 VA = 8 V with respect to the common ground* 

 Vth = VBA = VB  VA = 20  8 = 12 V—with B at a higher 

Fig. 2.133 

i.e. equivalent resistance of the 
the open-circuited terminals A and 
replace both the voltage and current 

has no internal resistance, it would 
be replaced by a short circuit i.e. zero resistance. However, 

removed and replaced by an ‘open’ 
infinite resistance (Art. 1.18). In that case, the circuit 

becomes as shown in Fig. 2.133 (c). As seen from Fig. 2.133 
Hence, Thevenin’s equivalent circuit 

12 V and a series resistance of 4 
). When 4  resistor is connected 

, as shown in Fig. 2.134 (b). 

1.5 A—from B to A 

3- resistor = 12 12  3/(6 + 3) = 12  4 = 8 V 

 
 
 
 
 
 
 
 
 
 
 
Fig. 2.134 
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4  resistor 

 

). Since full 10 A 
with respect to 
12 V battery. 

 potential 
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Example 2.64. Using Thevenin’s theorem, calculate the p.d. across terminals A and B in Fig. 
2.137 (a). 

 

 
Solution. When the 10  resistance is removed, the circuit becomes as shown in Fig. 2.135 (b). 

Fig. 2.135 

Now, we will find the open-circuit voltage VAB = Vth. For this purpose, we will go from point B 
to point A and find the algebraic sum of the voltages met on the way. 
It should be noted that with terminals A and B open, there is no volt- 
age drop on the 8  resistance. However the two resistances of 5  
and 2  are connected in series across the 20-V battery. As per volt- 
age-divider rule, drop on 2  resistance = 20  2/(2 + 5) = 5.71 V 
with the polarity as shown in figure. As per the sign convention of 
Art. 

VAB = Vth = + 5.71  12 =  6.29 V 

The negative sign shows that point A is negative with respect to 
point B or which is the same thing, point B is positive with respect to 
point A. 

 
Fig. 2.136 (a) 

For finding RAB = Rth, we replace the batteries by short-circuits as shown in Fig. 2.128 (c). 
 RAB = Rth = 8 + 2 || 5 = 9.43 
Hence, the equivalent Thevenin’s source with respect to terminals A and B is as shown in Fig. 

2.136. When 10  resistance is reconnected across A and B, current through it is I = 6.24/(9.43 + 10) 
= 0.32 A. 

Solution. (i) Finding Voc 

First step is to remove 7  resistor thereby open-circuiting terminals A and B as shown in Fig. 
2.137 (b). Obviously, there is no current through the 1  resistor and hence no drop across it. 
Therefore VAB = Voc = VCD. As seen, current I flows due to the combined action of the two batteries. 
Net voltage in the CDFE circuit = 18 6= 12 V. Total resistance = 6 + 3 = 9 . Hence, I = 12/9 = 
4/3 A 

VCD = 6 V + drop across 3  resistor = 6 + (4/3)  3 = 10 V* 
 Voc = Vth = 10 V. 
(ii) Finding Ri or Rth 

As shown in Fig. 2.137 (c), the two batteries have been replaced by short-circuits (SC) since their 
internal resistances are zero. As seen, Ri = Rth = 1 + 3 || 6 = 3 . The Thevenin’s equivalent circuit is 
as shown in Fig. 2.137 (d) where the 7  resistance has been reconnected across terminals A and B. 

 

* Also, VCD = 18drop across 6  resistor = 18 (4/3)  6 = 10 V 

Example 2.63. For the circuit shown in Fig. 2.135 (a), calculate the current in the 10 ohm 
resistance. Use Thevenin’s theorem only. 

(Elect. Science-I Allahabad Univ. 1992) 
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Example 2.65. Use Thevenin’s theorem to find the current in a resistance load connected between 
the terminals A and B of the network shown in Fig. 2.138 (a) if the load is (a) 2  (b) 1 

(Elect. Technology, Gwalior Univ.) 

Note. We could also find Voc and Ri by first Thevenining part of the circuit across terminals E and F and 
then across A and B (Ex. 2.62). 

Example 2.66. The four arms of a Wheatstone bridge have the following resistances : 

AB = 100, BC = 10, CD = 4, DA = 50  A galvanometer of 20  resistance is connected across 
BD. Use Thevenin’s theorem to compute the current through the galvanometer when a p.d. of 10 V 
is maintained across AC. (Elect. Technology, Vikram Univ. of Ujjain) 

The p.d. across this resistor can be found with the help of Voltage Divider Rule (Art. 1.15). 

Fig. 2.137 
 

Solution. For finding open-circuit voltage Voc or Vth across terminals A and B, we must first find 
current I2 flowing through branch CD. Using Maxwell’s loop current method (Art. 2.11), we have 
from Fig. 2.131 (a). 

 2 I1  4 (I1  I2) + 8 = 0 or 3 I1  2 I2 = 4 

Also  2 I2   2 I2   4  4 (I2  I1)   = 0    or I1  2 I2 = 1 

From these two equations, we get I2 = 0.25 A 

As we go from point D to C, voltage rise = 4 + 2  0.25 = 4.5 V 

Hence, VCD = 4.5 or VAB = Vth = 4.5 V.  Also, it may be noted that point A is positive with respect 
to point B. 

Fig. 2.138 

In Fig. 2.138 (b), both batteries have been removed. By applying laws of series and parallel 
combination of resistances, we get Ri = Rth = 5/4  = 1.25 

(i)   When RL  = 2  ; I = 4.5/(2 + 1.25) = 1.38 A 

(ii)   When RL  = 1  ; I = 4.5 (1 + 1.25) = 2.0 A 
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Solution.   (i) When galvanometer is removed from Fig. 2.139 (a), we get the circuit of     
Fig. 2.139 (b). 

(ii) Let us next find the open-circuit voltage Voc (also called Thevenin voltage Vth) between 
points B and D. Remembering that ABC (as well as ADC) is a potential divider on which a voltage 
drop of 10 V takes place, we get 

Potential of B w.r.t. C = 10  10/110 = 10/11 = 0.909 V 

Potential of D w.r.t. C = 10  4/54 = 20/27 = 0.741 V 

 p.d. between B and D is Voc or Vth = 0.909 0.741 = 0.168 V 
(iii) Now, remove the 10-V battery retaining its internal resistance which, in this case, happens to 

be zero. Hence, it amounts to short-circuiting points A and C as shown in Fig. 2.139 (d). 

Fig. 2.139 

(iv) Next, let us find the resistance of the whole network as viewed from points B and D. It may 
be easily found by noting that electrically speaking, points A and C have become one as shown in 
Fig. 2.140 (a). It is also seen that BA is in parallel with BC and AD is in parallel with CD. Hence, 
RBD = 10 || 100 + 50 || 4 = 12.79  

Fig. 2.140 

(v) Now, so far as points B and D are connected, the network has a voltage source of 0.168 V 
and internal resistance Ri = 12.79 . This Thevenin’s source is shown in Fig. 2.140 (c). 

(vi) Finally, let us connect the galvanometer (initially removed) to this Thevenin source and 
calculate the current I flowing through it. As seen from Fig. 2.140 (d). 

I = 0.168/(12.79 + 20) = 0.005 A = 5 mA 
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Example 2.68. Find the current flowing through the 4  resistor in Fig. 2.142 (a) when (i) E = 2 
V and (ii) E = 12 V. All resistances are in series. 

 

 
Solution. The given circuit can be redrawn, as shown in Fig. 2.141 (b) with the 1  resistor 

removed from terminals A and B. The current source has been converted into its equivalent voltage 
source as shown in Fig. 2.141 (c). For finding Vth, we will find the currents x and y in Fig. 2.141 (c). 
Applying KVL to the first loop, we get 

3  (3 + 2) x  1 = 0 or x = 0.4 A 

 Vth = VAB = 3 3  0.4 = 1.8 V 
The value of Rth can be found from Fig. 2.141 (c) by replacing the two voltage sources by short- 

circuits. In this case Rth = 2 || 3 = 1.2 . 

Fig. 2.141 

Thevenin’s equivalent circuit is shown in Fig. 2.141 (d). The current through the reconnected 
1  resistor is = 1.8/(12.1 + 1) = 0.82 A. 

Solution. When we remove E and 4  resistor, the circuit becomes as shown in Fig. 2.142 (b). 
For finding Rth i.e. the circuit resistance as viewed from terminals A and B, the battery has been short- 
circuited, as shown. It is seen from Fig. 2.142 (c) that Rth = RAB = 15 || 30 + 18 || 9 = 16 . 

 
Fig. 2.142 

We will find Vth = VAB with the help 
of Fig. 2.143 (a) which represents the 
original circuit, except with E and  4  
resistor removed. Here, the two circuits 
are connected in parallel across the 36 V 
battery. The potential of point A equals 
the drop on 30  resistance, whereas 
potential of point B equals the drop 
across 9 resistance. Using the voltage, Fig. 2.143 

Example 2.67.   Determine the current in the 1  resistor across AB of network shown in Fig.
2.141 (a) using Thevenin’s theorem. (Network Analysis, Nagpur Univ. 1993)
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Example 2.69. Calculate the value of Vth and Rth between terminals A and B of the circuit 
shown in Fig. 2.144 (a). All resistance values are in ohms. 

divider rule, we have 
VA = 30  30/45 = 24 V 
VB = 36  9/27 = 12 V 

 VAB = VA  VB = 24  12 = 12 V 
In Fig. 2.143 (b), the series combination of E and 4  resistors has been reconnected across 

terminals A and B of the Thevenin’s equivalent circuit. 
(i) I = (12  E)/20 = (12  2)/20 = 0.5 A (ii) I = (12  12)/20 = 0 

Solution. Forgetting about the terminal B for the time being, there are two parallel paths 
between E and F : one consisting of 12  and the other of (4 + 8) = 12 . Hence, REF = 12 || 12 = 6 
.  The source voltage of 48 V drops across two 6  resistances connected in series.   Hence, 
VEF = 24 V. The same 24 V acts across 12  resistor connected directly between E and F and across 
two series connected resistance of 4  and 6  connected across E and F. Drop across 4  resistor 
= 24  4/(4 + 8) = 8 V as shown in Fig. 2.144 (c). 

 
Now, as we go from B to A via point E, 

there is a rise in voltage of 8 V followed by 
another rise in voltage of 24 V thereby 
giving a total voltage drop of 32 V. Hence 
Vth = 32 V with point A positive. 

For finding Rth, we short-circuit the 48 
V source. This short circuiting, in effect, 
combines the points A, D and F electrically 
as shown in Fig. 2.145 (a). As seen from 
Fig. 2.145 (b), 

Rth = VAB = 8 || (4 + 4) = 4 . 

Fig. 2.144  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.145 
 

 
Solution. The given circuit of Fig. 2.146 (a) would be solved by applying Thevenin’s theorem 

twice, first to the circuit to the left of point C and D and then to the left of points A and B. Using this 
technique, the network to the left of CD [Fig. 2.146 (a)] can be replaced by a source of voltage V1 and 
series resistance Ri1 as shown in Fig. 2.146 (b). 

 

V =
 12  6  9 volts and R  6  2  1.5 

1 (6  1  1) i1 (6  2) 

Similarly, the circuit of Fig. 2.146 (b) reduced to that shown in Fig. 2.146 (c) 
 

 

V =  9 6  
2 (6 2   1.5) 

 
 

 
 

5.68 volts and Ri2 
6 3.5 

9.5 

 
 

2.21 

Example 2.70. Determine Thevenin’s equivalent circuit which may be used to represent the 
given network (Fig. 2.146) at the terminals AB. 

(Electrical Eng.; Calcutta Univ. ) 
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Example 2.71. Use Thevenin’s theorem, to find the value of load resistance RL in the circuit of 
Fig. 2.147 (a) which results in the production of maximum power in RL. Also, find the value of this 
maximum power. All resistances are in ohms. 

 

 
Fig. 2.146 

 

Solution. We will remove the voltage and current sources as well as RL from terminals A and B 
in order to find Rth as shown in Fig. 2.147 (b). 

Rth = 4 + 6 || 3 = 6 




In Fig. 2.147 (a), the current source 
has been converted into the equivalent 
voltage source for convenience. Since 
there is no current 4  resistance (and 
hence no voltage drop across it), Vth 
equals the algebraic sum of battery volt- 
age and drop across 6  resistor. As 
we go along the path BDCA, we get, 

Vth = 24  6/(6 + 3) 12 = 4 V 
The load resistance has been 

reconnected to the Thevenin’s 
equivalent circuit as shown in Fig. 
2.148 (b). For maximum power 
transfer, RL = Rth = 6 . 

Fig. 2.147 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.148 

V 2 
22 

Now, V = Vth 4 2 V; PL max    L     0.67 W 
L 2 2 RL 6 
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Example 2.73. Find Thevenin’s equivalent circuit for the network shown in Fig. 2.150 (a) for 
the terminal pair AB. 

 

 
Solution. When 6  resistor is removed [Fig. 2.149 (b)], whole of 2 A current flows along DC 

producing a drop of (2  2) = 4 V with the polarity as shown. As we go along BDCA, the total 
voltage is 

Fig. 2.149 

=   4 + 12 =  8 V —with A positive w.r.t. B. 

Hence, Voc = Vth = 8 V 
For finding Ri or Rth 18 V voltage source is replaced by a short-circuit (Art- 2.15) and the current 

source by an open-circuit, as shown in Fig. 2.149 (c). The two 4 resistors are in series and are thus 
equivalent to an 8  resistance. However, this 8  resistor is in parallel with a short of 0  
Hence, their equivalent value is 0    Now this 0  resistance is in series with the 2  resistor. 
Hence, Ri = 2 + 0 = 2  The Thevenin’s equivalent circuit is shown in Fig. 2.149 (d). 

 I   =  8/(2 + 6) = 1 Amp —from A to B 

Solution. It should be carefully noted that after coming to point D, the 6 A current has only one 
path to reach its other end C i.e., through 4  resistor thereby creating and IR drop of 6  4 = 24 V 
with polarity as shown in Fig. 2.150 (b). No part of it can go along DE or DF because it would not 
find any path back to point C.  Similarly, current due to 18-V battery is restricted to loop EDFE. 
Drop across 6  resistor = 18  6/(6 + 3) = 12 V. For finding VAB, let us start from A and go to B via 
the shortest route ADFB. As seen from Fig. 2.150 (b), there is a rise of 24 V from A to D but a fall of 
12 V. 

Fig. 2.150 

Example 2.72. Use Thevenin’s theorem to find the current flowing through the 6  resis- 
tor of the network shown in Fig. 2.149 (a). All resistances are in ohms. 

(Network Theory, Nagpur Univ. 1992) 
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Example 2.75. Calculate Vth and Rth between the open 
terminals A and B of the circuit shown in Fig. 2.154 (a). All 
resistance values are in ohms. 

from D to F. Hence, VAB = 24  12 = 12 V with point A negative w.r.t. point 
B*. Hence, Vth = VAB = 12 V (or VBA = 12 V). 

For finding Rth, 18 V battery has been replaced by a short-circuit and 6 A 
current source by an open-circuit, as shown in Fig. 2.150 (c). 

As seen, Rth = 4 + 6 || 3 + 2 
= 4 + 2 + 2 = 8 

Hence, Thevenin’s equivalent circuit for terminals A and B is as shown in 
Fig. 2.151. It should be noted that if a load resistor is connected across AB, 
current through it will flow from B to A. 

 
 
 
 
 
 
 
 

 
Fig. 2.151 

 

 
Solution. It should be understood that since terminals A and B are open, 2 A current can flow 

only through 4  and 10  resistors, thus producing a drop of 20 V across the 10  resistor, as shown in 
Fig. 2.152 (b). Similarly, 3 A current can flow through its own closed circuit between A and C 
thereby producing a drop of 24 V across 8  resistor as shown in Fig. 2.152 (b). Also, there is 
nodrop across 2  resistor because no current flows through it. 

Fig. 2.152 

Starting from point B and going to point A via points D and 
C, we get 

 
—with point A positive. 

Vth = – 20 + 20 + 24 = 24 V 

For finding Rth, we will short-circuit the voltage sources and 
open-circuit the current sources, as shown in Fig. 2.153. As seen, 
Rth = RAB = 8 + 10 + 2 = 20 







Fig. 2.153 
 

Solution. We will convert the 48 V voltage source with its series resistance of 12  into a 
current source of 4 A, with a parallel resistance of 12 , as shown in Fig. 2.154 (b). 

In Fig. 2.154 (c), the two parallel resistance of 12  each have been combined into a single 
resistance of 6 . It is obvious that 4 A current flows through the 6  resistor, thereby producing a 
drop of 6  4 = 24 V. Hence, Vth = VAB = 24 V with terminal A negative. In other words Vth = 24 
V. 

If we open-circuit the 8 A source and short-circuit the 48-V source in Fig. 2.154 (a), Rth = RAB = 
12 || 12 = 6 . 

* Incidentally, had 6 A current been flowing in the opposite direction, polarity of 24 V drop would have been 
reversed so that VAB would have equalled (24 + 12) = 36 V with A positive w.r.t. point B. 

Example 2.74. The circuit shown in Fig. 2.152 (a) contains two voltage sources and two cur- 
rent sources. Calculate (a) Vth and (b) Rth between the open terminals A and B of the circuit. All 
resistance values are in ohms. 
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Example 2.76. Calculate the value of Vth of Rth between the open terminals A and B of the 
circuit shown in Fig. 2.155 (a). All resistance values are in ohms. 

 

 
Fig. 2.154 

Solution. It is seen from Fig. 2.155 (a) that positive end of the 24 V source has been shown 
connected to point A. It is understood that the negative terminal is connected to the ground terminal G. 
Just to make this point clear, the given circuit has been redrawn in Fig. 2.155 (b) as well as in   
Fig. 2.155 (c). 

Let us start from the positive terminal of the battery and go to its negative terminal G via point C. 
We find that between points C and G, there are two parallel paths :  one of 6  resistance and the 

Fig. 2.155 

other of (2 + 4) = 6  resistance, giving a combined resistance of 6 || 6 = 3  Hence, total resistance 
between positive and negative terminals of the battery = 3 + 3 = 6 . Hence, battery current = 24/6 
= 4 A. As shown in Fig. 2.155 (c), this current divides equally at point C. Let us go from B to A via 
points D and G and total up the potential difference between the two, Vth = VAB = 8 V + 24 V = 16 V 
with point A positive. 

For finding Rth, let us replace the voltage source by a short-circuit, as shown in Fig. 2.156 (a). It 
connects one end each of 6  resistor and 4  resistor directly to point A, as shown in Fig. 2.156 (b). 
The resistance of branch DCG = 2 + 6 || 3 = 4  Hence Rth = RAB = 4 || 4 = 2 . 

Fig. 2.156 
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2

 

 
Solution. The open-circuit voltage Voc (also called Thevenin’s voltage Vth) is that which appears 

across terminals A and B. This equals the voltage drop across 10  resistor between points C and D. 
Let us find this voltage. With AB an open-circuit, 120-V battery voltage acts on the two parallel paths 
EF and ECDF. Hence, current through 10  resistor is 

I = 120/(20 + 10 + 20) = 2.4 A 

Drop across 10- resistor, Vth = 10  2.4 = 24 V 
Now, let us find Thevenin’s resistance Rth i.e. equivalent resistance of the given circuit when 

looked into from terminals A and B. For this purpose, 120 V battery is removed. The results in 
shorting the 40- resistance since internal resistance of the battery is zero as shown in Fig. 2.157 (b). 

 
 Ri or Rth 16  

10  (20  20)  16  40 
10  (20  20) 

 

 
Fig. 2.157 

Thevenin’s equivalent circuit is shown in Fig. 2.157 (c). As shown in Fig. 2.157 (d), current 
through 8- resistor is 

I   =  24 /(40 8) 1 A P I 2R 
1 8 2 W  
2 

 

 
Solution. The current source has been converted into an equivalent voltage source in Fig. 158 (b). 

(i) Finding Voc. As seen from Fig. 2.158 (c), Voc = VCD. In closed circuit CDFEC, net voltage 
= 24 8 = 16 V and total resistance = 8 + 4 + 4 = 16  Hence, current = 16/16 = 1 A. 

 

Fig. 2.158 

Example 2.78. With the help of Thevenin’s theorem, calculate the current flowing through the 
3- resistor in the network of Fig. 2.158 (a). All resistances are in ohms. 

Example 2.77. Calculate the power which would be dissipated in the 8- resistor connected 
across terminals A and B of Fig. 2.157 (a). All resistance values are in ohms. 

=
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Drop over the 4- resistor in  branch CD 
= 4  1 = 4 V with a polarity which is in series 
addition with 8-V battery. 

Hence, Voc = Vth = VCD = 8 + 4 = 12 V 

(ii) Finding Ri or Rth. In Fig. 2.159 (a), the 
two batteries have been replaced by short-circuits 
because they do not have any internal resistance. 

As seen, Ri = 6 + 4 || (8 + 4) = 9 
The Thevenin’s equivalent circuit is as shown 

in Fig. 2.159 (b). 

I = 12/(9 + 3) = 1 A 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.159 

 

 
Solution. First, we will find Rth across open terminals A and B and then find Vth due to the 

voltage sources only and then due to current source only and then using Superposition theorem, 
combine the two voltages to get the single Vth. After that, we will find the Thevenin equivalent. 

In Fig. 2.160 (b), the terminals A and E have been open-circuited by removing the 10 V 
source and the 1  resistance. Similarly, 24 V source has been replaced by a short and current 
source has been replaced by an infinite resistance i.e. by open-circuit.  As seen, RAB = Rth  = 4 || 
4 = 2 . 

Fig. 2.160 

Example 2.79. Using Thevenin and Superposition theorems find complete solution for the 
network shown in Fig. 2.160 (a). 
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We will now find Vth 1 across AB due to 24 V source only by open-circuiting the current source. 
Using the voltage-divider rule in Fig. 2.160 (c), we get VAB = VCD = Vth 1 = 24/2 = 12 V. 

Taking only the current source and short-circuiting the 24 V source in Fig. 2160 (d), we find that 
there is equal division of current at point C between the two 4    parallel resistors.   Therefore,   Vth 

2 = VAB = VCD = 1 4 = 4 V. 
Using Superposition theorem, Vth = Vth 1 + Vth 2 = 12 + 4 = 16 V. Hence, the Thevenin’s 

equivalent consists of a 16 V source in series with a 2  resistance as shown in Fig. 2.160 (e) where 
the branch removed earlier has been connected back across the terminals A and B. The net voltage 

around the circuit is = 16 10 = 6 V and total resistance is = 2 + 1 = 3  Hence, current in the circuit is 
= 6/3 = 2 A. Also, VAB = VAD = 16 (2  2) = 12 V. Alternatively, VAB equals (2  1) + 10 = 12 V. 

Since we know that VAB = VCD = 12 V, we can find other voltage drops and various circuit currents as 
shown in Fig. 2.160 (f). Current delivered by the 24-V source to the node C is (24  VCD)/4 = (24 12)/ 
4 = 3 A. Since current flowing through branch AB is 2 A, the balance of 1 A flows along CE. As seen, 
current flowing through the 4  resistor connected across the current source is = (1 + 2) = 3 A. 

Example 2.80. Use Superposition Theorem to find I in the circuit of Fig. 2.161. 

[Nagpur Univ. Summer 2001] 

Solution. At a time, one source acts and the other is 
de-activated, for applying Superposition theorem. If I1 
represents the current in 5-ohm resistor due to 20-V 
source, and I2 due to 30-V source, 

I = I1 + I2 

Due to 20-V source, current into node B 

= 20/(20 + 5/6) = 0.88 amp 

Out of this, I1 = 0.88  6/11 = 0.48 amp 
Fig. 2.161. Given Circuit Due to 30-V source, current into node B 

= 30/(6 + 5/20) = 3 amp 

Out of this, I2 = 3  20/25 = 2.4 amp 

Hence, I = 2.88 amp 

Alternatively, Thevenin’s theorem can be applied at nodes BD after removing 5-ohms resistor 
from its position. Following the procedure to evaluate VTH and RTH, 

Thevenin-voltage, VTH = 27.7 Volts 

and RTH = 4.62 Ohms 

Current, I = 27.7/(4.62 + 5) = 2.88 amp 
 

 General Instructions for Finding Thevenin Equivalent Circuit 

So far, we have considered circuits which consisted of resistors and independent current or voltage 
sources only. However, we often come across circuits which contain both independent and dependent 
sources or circuits which contain only dependent sources. Procedure for finding the value of Vth and 
Rth in such cases is detailed below : 

(a) When Circuit Contains Both Dependent and Independent Sources 

(i) The open-circuit voltage Voc is determined as usual with the sources activated or ‘alive’. 
(ii) A short-circuit is applied across the terminals a and b and the value of short-circuit 

current ith is found as usual. 
(iii) Thevenin resistance Rth = voc/ish. It is the same procedure as adopted for Norton’s theo- 

rem. Solved examples 2.81 to 2.85 illustrate this procedure. 
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Example 2.81. Find Thevenin equivalent circuit for the network shown in Fig. 2.162 (a) which 
contains a current controlled voltage source (CCVS). 

Example 2.82. Find the Thevenin equivalent circuit with respect to terminals a and b of the 
network shown in Fig. 2.163 (a). 

(b) When Circuit Contains Dependent Sources Only 

(i) In this case, voc = 0 

(ii) We connect 1 A source to the terminals a and b and calculate the value of vab. 

(iii) Rth = Vab/ 1 
The above procedure is illustrated by solved examples. 

Fig. 2.162 

Solution. For finding Voc available across open-circuit terminals a and b, we will apply KVL to 
the closed loop. 

 12  4 i × 2 i  4 i  =  0  i = 2 A 
Hence, Voc = drop across 4  resistor = 4  2 = 8 V. It is so because there is no current through 

the 2  resistor. 

For finding Rth, we will put a short-circuit across terminals a and b and calculate Ish, as shown in 
Fig. 2.162 (b). Using the two mesh currents, we have 

12 4 i1 + 2 i 4(i1 i2) = 0 and 8 i2 4 (i2 i1) = 0. Substituting i = (i1 i2) and Simplifying 
the above equations, we have 

12  4 i1  + 2 (i1  i2)  4 (i1  i2) = 0    or    3 i1   i2 = 6 ...(i) 

Similarly, from the second equation, we get i1 = 3 i2. Hence, i2= 3/4 and Rth = Voc/Ish = 8/(3/4) 
= 32/3 . The Thevenin equivalent circuit is as shown in Fig. 2.162 (c). 

Solution.  It will be seen that with terminals a and b open, current through the 8  resistor is 
vab/4 and potential of point A is the same that of point a (because there is no current through 4 
resistor). Applying KVL to the closed loop of Fig. 2.163 (a), we get 

6 + (8  vab/4) vab = 0 or vab = 12 V 

Fig. 2.163 

It is also the value of the open-circuit voltage voc. 
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Example 2.83. Find the Thevenin equivalent circuit for the network shown in Fig. 2.164 (a) 
which contains only a dependent source. 

For finding short-circuit current ish, we short-circuit the terminals a and b as shown in Fig. 2.163 
(b). Since with a and b short-circuited, vab = 0, the dependent current source also becomes zero. 
Hence, it is replaced by an open-circuit as shown. Going around the closed loop, we get 

12  ish (8 + 4) = 0 or ish = 6/12 = 0.5 A 
Hence, the Thevenin equivalent is as shown in Fig. 2.163 (c). 

Solution. Since circuit contains no independent source, i = 0 when terminals a and b are open. 
Hence, voc = 0. Moreover, ish is zero since voc = 0. 

Consequently, Rsh cannot be found from the relation Rth = voc/ish. Hence, as per Art. 2.20, we will 
connect a 1 A current source to terminals a and b as shown in Fig. 2.164 (b). Then by finding the 
value of vab, we will be able to calculate Rth = vab/1. 

 
Fig. 2.164 

It should be noted that potential of point A is the same as that of point a i.e. voltages across 12 
resistor is vab. Applying KCL to point A, we get 

2 i  vab   
vab  1

 
6 12 = 0 or 4 i  3 vab =  12 

Since i = vab/12, we have 4 (vab/12) 3 vab =  12 or vab = 4.5 V Rth = vab/1 = 4.5/1 = 4.5 
The Thevenin equivalent circuit is shown in Fig. 2.164 (c). 

Solution. It would be seen from Fig. 2.165(a) that potential of node A equals the open-circuit 
terminal voltage voc. Also, i = (vs  voc)/(80 + 20) = (6 voc)/100. 

Applying KCL to node, A we get 

6  Voc     
9  (6  voc )   

Voc 

100 100 10 
= or Voc = 3 V 

 

 
Fig. 2.165 

Example 2.84. Determine the Thevenins equivalent circuit as viewed from the open-circuit 
terminals a and b of the network shown in Fig. 2.165 (a). All resistances are in ohms. 



132 Electrical Technology 
 

Example 2.85. Find the Thevenin’s equivalent circuit with respect to terminals a and b of the 
network shown in Fig. 2.166 (a). All resistances are in ohms. 

For finding the Thevenin’s resistance with respect to terminals a and b, we would first ‘kill’ the 
independent voltage source as shown in Fig. 2.165 (b). However, the dependent current source 
cannot be ‘killed’. Next, we will connect a current source of 1 A at terminals a and b and find the 
value of vab. Then, Thevenin’s resistance Rth = vab/1. It will be seen that current flowing away from 
node A i.e. from point c to d is = vab/100. Hence, i = voc/100. Applying KCL to node A, we get 

 
vab  9 

  
vab   

vab  1 = 0 or v 
 

  

= 5 V 

100  100  10 ab 

 Rth = 5/1 = 5  Hence, Thevenin’s equivalent source is as shown in Fig. 2.165 (c). 

Solution. It should be noted that with terminals a and b open, potential of node A equals vab. 
Moreover, v = vab. Applying KCL to node A, we get 

 5  
vab  1  vab  150 

  V 
 

  

 = 0 or Vab = 75 V 
15 10    3  ab 

 

Fig. 2.166 

For finding Rth, we will connect a current source of iA* across terminals a and b. It should be 
particularly noted that in this case the potential of node A equals (vab 30 i). Also, v = (vab 30 i) = 
potential of node A, Applying KCL to node A, we get from Fig. 2.166 (b). 

i = 
(vab  30 i)  1  vab  30 i   (v

 
 

  

 30 i) 
 
 0 

15 10   3  ab 
 

 4 vab = 150 i or vab/i = 75/2  Hence, Rth  = vab/i = 75/2 .  The Thevenin’s equivalent  circuit 
is shown in Fig. 2.166 (c). 

 

 Reciprocity Theorem 

It can be stated in the following manner : 

In any linear bilateral network, if a source of e.m.f. E in any branch produces a current I in 
any other branch, then the same e.m.f. E acting in the second branch would produce the same 
current I in the first branch. 

In other words, it simply means that E and I are mutually transferrable. The ratio E/I is known as 
the transfer resistance (or impedance in a.c. systems). Another way of stating the above is that the 
receiving point and the sending point in a network are interchangebale. It also means that interchange 
of an ideal voltage sources and an ideal ammeter in any network will not change the ammeter reading. 
Same is the case with the interchange of an ideal current source and an ideal voltmeter. 

 

* We could also connect a source of 1 A as done in Ex. 2.83. 
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Solution. (a) Equivalent resistance between points C and B in Fig. 2.167 (a) is 

= 12 × 4/16 = 3 
 Total circuit reistance 

= 2 + 3 + 4 = 9 
   Battery current = 36/9 = 4 A 
 Ammeter current 

= 4 × 12/16 = 3 A. 
(b) Equivalent resistance between points C 

and D in Fig. 2.167 (b) is 
= 12 × 6/18 = 4 

Total circuit resistance = 4 + 3 + 1 = 8 
Battery current = 36/8 = 4.5 A 
  Ammeter current  =  4.5 × 12/18 = 3 A 
Hence, ammeter current in both cases is the same. 
Transfer resistance = 36/3 = 12 . 

 
Fig. 2.167 

 

 
Solution. Let the currents in the various branches be as shown in the figure. Applying Kirchhoff’s 

second law, we have 

For loop ABDA ; 2I1  8I3  + 6I2  = 0    or    I1  3I2  + 4I3  = 0  ...(i) 

For loop BCDB, 4 (I1  I3) + 5 (I2  + I3) + 8I3  = 0    or    4I1  5I2   17I3  = 0 ...(ii) 

For loop ABCEA, 2I1  4(I1  I3) 10(I1  + I2) + 1 = 0  or  16I1  + 10I2  4I3  = 1  ...(iii)  
Solving for I1, I2 and I3, we get I1 = 0.494 A; I2 = 0.0229 A; I3 = 0.0049 A 

Fig. 2.168 Fig. 2.169 

 Current in the 1 volt battery circuit is I1 + I2 = 0.0723 A. 
The new circuit having 2 - V battery connected in the branch BD is shown in Fig. 2.169. According 

to the Principle of Superposition, the new current in the 1- volt battery circuit is due to the superposition 
of two currents; one due to 1 - volt battery and the other due to the 2 - volt battery when each acts 
independently. 

The current in the external circuit due to 1 - volt battery when 2 - volt battery is not there, as 
found above, is 0.0723 A. 

Example 2.87. Calculate the currents in the various branches of the network shown in Fig. 
2.168 and then utilize the principle of Superposition and Reciprocity theorem together to find the 
value of the current in the 1-volt battery circuit when an e.m.f. of 2 votls is added in branch BD 
opposing the flow of original current in that branch. 

Example 2.86. In the netwrok of Fig. 2.167 (a), find (a) ammeter current when battery is at A 
and ammeter at B and (b) when battery is at B and ammeter at point A. Values of various resistances 
are as shown in diagram. Also, calculate the transfer resistance. 
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Now, according to Reciprocity theorem; if 1 - volt battery were tansferred to the branch BD 
(where it produced a current of 0.0049 A), then it would produce a current of 0.0049 A in the branch 
CEA (where it was before). Hence, a battery of 2 - V would produce a current of (2 × 0.0049) =  
0.0098 A (by proportion). The negative sign is used because the 2 - volt battery has been so con- 
nected as to oppose the current in branch BD, 

 new current in branch CEA = 0.0723 0.0098 = 0.0625 A 
 

Tutorial Problems No. 2.5 
1. Calculate the current in the 8-W resistor of Fig. 2.170 by using Thevenin’s theorem. What will be its 

value of connections of 6-V battery are reversed ? [0.8 A ; 0 A] 

2. Use Thevenin’s theorem to calculate the p.d. across terminals A and B in Fig. 2.171. [1.5 V] 
 
 
 
 
 
 
 
 
 

Fig. 2.170 Fig. 2.171 Fig. 2.172 

3. Compute the current flowing through the load resistance of 10 connected across terminals A and B 
in Fig. 2.172 by using Thevenin’s theorem. 

4. Find the equivalent Thevenin voltage and equivalent Thevenin resistance respectively as seen from 
open-circuited terminals A and B to the circuits shown in Fig. 2.173. All resistances are in ohms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.173 

[(a) 8 V, 6 ;  (b) 120 V,  6 ;  (c) 12 V,  6 ;  (d) 12 V,  20 ;  (e) 40 V,  5 ;  (f)  12 V,  30 ] 
5. Find Thevenin’s equivalent of the circuits shown in Fig. 2.174 between terminals A and B. 

[(a)  V     I    
R1  R2   V 

R2 ; R  
R1 R2 (b) V  

V1R2  V2R1 ; R  
R1R2 

th R1  R2 R1  R2 
th R1  R2 

th R1   R2 
th R1  R2 

(c) Vth = IR; Rth = R1 (d) Vth = V1 IR, Rth = R (e) Not possible] 
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 9. In the network shown in
between points A and B 

(a) Thevenin’s theorem and (

10. State and explain Thevenin’s theorem. By applying Thevenin’s theorem or otherewise, find the cur
rent through the resistance 

 
  

 
 
 

 

Fig. 2.178

11. State and explain Thevenin’s theorem.

For the circuit shown in
value of RL for which the power drawn

12. Find the Thevenin’s equivalent circuit for terminal pair 

Fig. 2.180 

13. For the circuit shown in Fig. 2.181, determine current through 

14. Determine Thevenin’s equivalent
the terminals AB. 

15. For the circuit shown in Fig. 2.183 find Thevenin’s equivalent circuit for terminal pair

 

Fig. 2.183

Technology 

in Fig. 2.177 find the current that would flow if a 2- resistor was
B by using. 

Thevenin’s theorem and (b) Superposition theorem. The two batteries have negligible

State and explain Thevenin’s theorem. By applying Thevenin’s theorem or otherewise, find the cur
rent through the resistance R and the voltage across it when connected as shown in Fig.

[60.49 A, 600.49 V] (Elect. and Mech. Technology, Osmania

 

 

2.178 Fig. 2.179 

State and explain Thevenin’s theorem. 

in Fig. 2.179, determine the current through RL when its value is 50
for which the power drawn from the source is maximum. 

(Elect. Technology I, Gwalior

Find the Thevenin’s equivalent circuit for terminal pair AB for the network shown in Fig.

[Vth = 16 V and 

 
 Fig. 2.181 Fig. 2.182 

For the circuit shown in Fig. 2.181, determine current through RL when it takes values of 5 and 10

[0.588 A, 0.408 A] (Network Theorem and Fields, Madras

equivalent circuit which may be used to represent the network of 
 [Vth  = 4.8 V,  

For the circuit shown in Fig. 2.183 find Thevenin’s equivalent circuit for terminal pair AB

2.183 Fig. 2.184 

was connected 

negligible resistance.

[0.82 A]

State and explain Thevenin’s theorem. By applying Thevenin’s theorem or otherewise, find the cur-
and the voltage across it when connected as shown in Fig. 2.178. 

Osmania Univ.)

50 . Find the 

Elect. Technology I, Gwalior Univ.)

for the network shown in Fig. 2.180. 

16 V and Rth = 16 ]

  

when it takes values of 5 and 10 . 
Network Theorem and Fields, Madras Univ.) 

of Fig. 2.182 at 
V,  Rth  = 2.4  ] 

AB. 
[6 V, 6 ] 
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R 1 

R12 R31 

R12  R23  R31 
; R 2 

R23 R12 

R12  R23  R31 
and R 3 

R31 R23 

R12  R23  R31 

 

16. ABCD is a rectangle whose opposite side AB and DC represent resistances of 6 each, while AD and 
BC represent 3  each. A battery of e.m.f. 4.5 V and negligible resistances is connected between 
diagonal points A and C and a 2 -  resistance between B and D. Find the magnitude and direction of 
the current in the 2-ohm resistor by using Thevenin’s theorem. The positive terminal is connected to 
A. (Fig. 2.184) [0.25 A from D to B] (Basic Electricity Bombay Univ.) 

 Delta/Star* Transformation 

In solving networks (having considerable number of branches) by the application of Kirchhoff’s 
Laws, one sometimes experiences great difficulty due to a large number of simultaneous equations 
that have to be solved. However, such complicated network can be simplified by successively replacing 
delta meshes by equivalent star system and vice versa. 

Suppose we are given three resistances R12, R23 and R31 connected in delta fashion between 
terminals 1, 2 and 3 as in Fig. 2.185 (a). So far as the respective terminals are concerned, these three 
given resistances can be replaced by the three resistances R1, R2 and R3 connected in star as shown in 
Fig. 2.185 (b). 

These two arrangements will be electrically equivalent if the resistance as measured between any 
pair of terminals is the same in both the arrangements. Let us find this condition. 

Fig. 2.185 

First, take delta connection : Between terminals 1 and 2, there are two parallel paths; one having 
a resistance of R12 and the other having a resistance of (R12 + R31). 

 Resistance between terminals 1 and 2 is = R12   (R23   R31) 

R12    (R23   R31) 
Now, take star connection : The resistance between the same terminals 1 and 2 is (R1 + R2). 
As terminal resistances have to be the same 

 R1 + R2 = 
R12  (R23  R31) 
R12  R23  R31 

...(i) 

Similarly, for terminals 2 and 3 and terminals 3 and 1, we get 

R2 

 
and R3 

+ R3   = 

 
+ R1   = 

R23  (R31  R12) 
R12  R23  R31 

R31  (R12  R23) 
R12  R23  R31 

...(ii) 

 
...(iii) 

Now, subtracting (ii) from (i) and adding the result to (iii), we get 

* In Electronics, star and delta circuits are generally referred to as T and  circuits respectively. 
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R = 
R R  R 1   2 2   3 3 1 R  R R 

12  R  R 
R R 1 2 

1 2 

R = 
R R  R R  R R 

R3 R3 

1   2 2   3 3 1 
23  R  R 

R R 2 3 
2 3 

R31 = 
R R  R R  R R 

R1 R1 

1   2 2 3 

R2 

3 1  R1  R3 
R R 3 1 

R2 

Example 2.88. Find the input resistance of the circuit between the points A and B of Fig 2.186(a). 

(AMIE Sec. B Network Analysis Summer 1992) 

Example 2.89. Calculate the equivalent resistance between the terminals A and B in the net- 
work shown in Fig. 2.187 (a). (F.Y. Engg. Pune Univ.) 

How to Remember ? 

It is seen from above that each numerator is the product of the two sides of the delta which meet 
at the point in star. Hence, it should be remembered that : resistance of each arm of the star is given 
by the product of the resistances of the two delta sides that meet at its end divided by the sum of the 
three delta resistances. 

 Star/Delta Transformation 
This tarnsformation can be easily done by using equations (i), (ii) and (iii) given above. Multi- 

plying (i) and (ii), (ii) and (iii), (iii) and (i) and adding them together and then simplifying them, we 
get 

 
 
 
 
 
 

 

How to Remember ? 
The equivalent delta resistance between any two terminals is given by the sum of star resistances 

between those terminals plus the product of these two star resistances divide by the third star 
resistances. 

Solution. For finding RAB, we will convert the delta CDE of Fig. 2.186 (a) into its equivalent star 
as shown in Fig. 2.186 (b). 

RCS = 8 × 4/18 = 16/9 ; RES, = 8 × 6/18 = 24/9 ; RDS = 6 × 4/18 = 12/9 . 
The two parallel resistances between S and B can be reduced to a single resistance of 35/9 . 

Fig 2.186 

As seen from Fig. 2.186 (c), RAB = 4 + (16/9) + (35/9) = 87/9 . 

Solution. The given circuit can be redrawn as shown in Fig. 2.187 (b). When the delta BCD is 
converted to its equivalent star, the circuit becomes as shown in Fig. 2.187 (c). 

Each arm of the delta has a resistance of 10 . Hence, each arm of the equivalent star has a 
resistance = 10 × 10/30 = 10/3 . As seen, there are two parallel paths between points A and N, each 
having a  resistance of  (10  +  10/3) =  40/3 .   Their combined resistance is  20/3 .   Hence,    RAB = 
(20/3) + 10/3 = 10 . 
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Example 2.90. Calculate the current flowing through the 10  resistor of Fig. 2.188 (a) by 
using any method. (Network Theory, Nagpur Univ. 1993) 

Example 2.91. A bridge network ABCD has arms AB, BC, CD and DA of resistances 1, 1, 2 and 
1 ohm respectively. If the detector AC has a resistance of 1 ohm, determine by star/delta 
transformation, the network resistance as viewed from the battery terminals. 

(Basic Electricity, Bombay Univ.) 

 

 
Fig. 2.187 

Solution. It will be seen that there are two deltas in the circuit i.e. ABC and DEF. They have 
been converted into their equivalent stars as shown in Fig. 2.188 (b). Each arm of the delta ABC has 
a resistance of 12 and each arm of the equivalent star has a resistance of 4 . Similarly, each arm of 
the delta DEF has a resistance of 30  and the equivalent star has a resistance of 10  per arm. 

The total circuit resistance between A and F = 4 + 48 || 24 + 10 = 30 . Hence I = 180/30 = 6 A. 

Current through 10  resistor as given by current-divider rule = 6 × 48/(48 + 24) = 4 A. 

Fig. 2.188 
 

Fig. 2.189 

Solution. As shown in Fig. 2.189 (b), delta DAC has been reduced to its equivalent star. 

R =
 2  1  0.5 , 

D 2  1  1 
R  1  0.25 , 

A 4 
R  2  0.5 

C 4 
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Example 2.93. State Norton’s theorem and find current using Norton’s theorem through a load 
of 8  in the circuit shown in Fig. 2.191(a).(Circuit and Field Theory, A.M.I.E. Sec. B, 1993) 

Hence, the original network of Fig. 2.189 (a) is reduced to the one shown in Fig. 2.189 (d). As 
seen, there are two parallel paths between points N and B, one of resistance 1.25  and the other of 
resistance 1.5 . Their combined resistance is 

=   
1.25  1.5  15 
1.25  1.5 22 

Total resistance of the network between points D and B is 

=  0.5 15 
22 

13 Ω 
11 

 

 
Fig. 2.190 

Solution. The star of Fig. 2.190 (a) may be converted into the equivalent delta and combined in 
parallel with the given delta ABC. Using the rule given in Art. 2.22, the three equivalent delta 
resistance of the given star become as shown in Fig. 2.190 (b). 

When combined together, the final circuit is as shown in Fig. 2.190 (c). 

(i) As seen, there are two parallel paths across points A and B. 

(a) one directly from A to B having a resistance of 6  and 

(b) the other via C having a total resistance 
 

27  9 2.25 
20 10 

 
 

RAB 
 

 

  6 2.25  
(6 2.25) 

 
 

18 Ω 
11 

 9 6  27 27 6    9  
10 20  441 Ω R  20 10  621 Ω 

(ii) RBC =  9 6  27 550 (iii) CA  9 6  27 550 
10 20 10 20 

Solution. In Fig. 2.191 (b), load impedance has replaced by a short-circuit. 

ISC = IN = 200/2 = 100 A. 

Fig. 2.191 

Example 2.92. A network of resistances is formed as follows as in Fig. 2.190 (a) 

AB = 9  ; BC = 1 ;  CA = 1.5  forming a delta and AD = 6  ; BD = 4  and CD = 3 
forming a star.  Compute the network resistance measured between (i) A and B (ii) B and C and 
(iii) C and A. (Basic Electricity, Bombay Univ. 1980) 

=
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Example 2.94.  Use delta-star conversion to find resistance between terminals ‘AB’ of the cir- 
cuit shown in Fig. 2.193 (a).  All resistances are in ohms. [Nagpur University April 1999] 

Norton’s resistance RN can be found by looking into the open terminals of Fig. 2.191 (a). For this 
purpose  ABC has been replaced by its equivalent Star. As seen, RN is equal to 8/7 . 

Hence, Norton’s equivalent circuit consists of a 100 A source having a parallel resistance of 
8/7 as shown in Fig. 2.192 (c). The load current IL can be found by using the Current Divider rule. 

IL = 100  (8 / 7)  12.5 A 
8  (8 / 7) 

 

 
Fig. 2.192 

Fig. 2.193 (a) 

Solution. First apply delta-star conversion to CGD and EDF, so as to redraw the part of the 
circuit with new configuration, as in Fig. 2.193 (b). 

Fig. 2.193 (b) Fig. 2.193 (c) 

 
Fig. 2.193 (d) Fig. 2.193 (e) 

Simplify to reduce the circuit to its equivalents as in Fig. 2.193 (c) and later as in Fig. 2.193 (d). 
Convert CHJ to its equivalent star as in Fig. 2.193 (e). With the help of series-parallel combinations, 
calculate RAD as 
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Fig. 2.193 (g) 

Solution. Convert delta to star for nodes C, E, F. New node N is created. Using the formulae 
for this conversion, the resistances are evaluated as marked in Fig. 2.193 (h). After handling series 
parallel combinations for further simplifications. 

RAB    =  36 ohms. 

Fig. 2.193 (h) Fig. 2.193 (i) 
 
 
 

Solution. Maximum power transfer takes place when load resistance = Thevenin’s Resistance 
= 20 ohms, here 

R/60 = 20 ohms, giving R = 30 ohms 
VTH = 180  (60/90) = 120 volts 

Current through load = 120/40 = 3 amps 
Maximum Power Load = 180 watts 

Example 2.94 (a). Find the resistance at the A-B terminals in the electric circuit of Fig. 2.193 
(g) using -Y transformation. [U.P. Technical University, 2001] 

RAB = 5.33 + (1.176  4.12/5.296) = 6.245 ohms 
Note : Alternatively, after simplification as in Fig. (d). “CDJ 

– H” star-configuration can be transformed into delta. Node H 
then will not exist. The circuit has the parameters as shown in 
Fig. 2.193 (f). Now the resistance between C and J (and also 
between D and J) is a parallel combination of 7.2 and 2.8 ohms, 
which 2.016 ohms. Along CJD, the resistance between terminals 
AB then obtained as : 

RAB = 5.0 + (1.8  4.032/5.832) 

= 5.0 + 1.244 = 6.244 ohms Fig. 2.193 (f) 

Example 2.94 (b). Consider the electric circuit shown in Fig. 2.193 (i) 
Determine : (i) the value of R so that load of 20 ohm should draw the maximum power, (ii) the 

value of the maximum power drawn by the load. [U.P. Technical University, 2001] 
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Tutorial Problems No. 2.6 

Delta/Star Conversion 
1. Find the current in the 17  resistor in the network shown in Fig. 2.194 (a) by using (a) star/delta 

conversion and (b) Thevenin’s theorem. The numbers indicate the resistance of each member in 
ohms. [10/3A] 

2. Convert the star circuit of Fig. 2.194 (b) into its equivalent delta circuit. Values shown are in ohms. 
Derive the formula used. (Elect. Technology, Indor Univ.) 

 

Fig. 2.194 (a) Fig. 2.194 (b) Fig. 2.195 

3. Determine the resistance between points A and B in the network of Fig. 2.195. 

[4.23 ]  (Elect. Technology,  Indor Univ.) 

4. Three resistances of 20  each are connected in star. Find the equivalent delta resistance. If the source 
of e.m.f. of 120 V is connected across any two terminals of the equivalent delta-connected resistances, 
find the current supplied by the source. [60 , 3A] (Elect. Engg. Calcutta Univ.) 

 

Fig. 2.196 Fig. 2.197 

5. Using delta/star transformation determine the current through the galvanometer in the Wheatstone bridge 
of Fig. 2.196. [0.025 A] 

6. With the aid of the delta star transformation reduce the network given in Fig. 2.197 (a) to the equivalent 
circuit shown at (b) [R  =  5.38 ] 

7. Find the equivalent resistance between points A and B of the circuit shown in Fig. 2.198. [1.4 R] 

8. By first using a delta-star transformation on the mesh ABCD of the circuit shown in Fig. 2.199, prove that 
the current supplied by the battery is 90/83 A. 

 

Fig. 2.198 Fig. 2.199 
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Example 2.95. Calculate the values of new currents in the network illustrated in Fig. 2.200 
when the resistor R3 is increased (in place of s) by 30 %. 

 Compensation Theorem 

This theorem is particularly useful for the following two purposes : 

(a) For analysing those networks where the values of the branch elements are varied and for 
studying the effect of tolerance on such values. 

(b) For calculating the sensitivity of bridge network. 

As applied to d.c. circuits, it may be stated in the following for ways : 

(i) In its simplest form, this theorem asserts that any resistance R in a branch of a network in 
which a current I is flowing can be replaced, for the purposes of calculations, by a voltage 
equal to – IR. 

OR 

(ii) If the resistance of any branch of network is changed from R to (R + R) where the 
current flowing originally is I, the change of current at any other place in the network 
may be calculated by assuming that an e.m.f. – I. R has been injected into the modified 
branch while all other sources have their e.m.f.s. suppressed and are represented by their 
internal resistances only. 

 

 
Solution. In the given circuit, the values of 

various branch currents are 

I1 = 75/(5 + 10) = 5 A 
I2 = I3 = 2.5 A 

Now, value of 

R3 = 20 + (0.3  20) = 26 
  R = 6 

V = I3  R 
= – 2.5  6 =  15 V 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2.200 

The compensating currents produced by this voltage are as shown in Fig. 2.201 (a). 

When these currents are added to the original currents in their respective branches the new cur- 
rent distribution becomes as shown in Fig. 2.201 (b) 

 

 
 Norton’s Theorem 

Fig. 2.201 

This theorem is an alternative to the Thevenin’s theorem. In fact, it is the dual of Thevenin’s 
theorem. Whereas Thevenin’s theorem reduces a two-terminal active network of linear resistances 
and generators to an equivalent constant-voltage source and series resistance, Norton’s theorem replaces 
the network by an equivalent constant-current source and a parallel resistance. 
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This theorem may be stated as follows : 

(i) Any two-terminal active network containing voltage sources and resistance when viewed 
from its output terminals , is equivalent to a constant-current source and a parallel resistance. 
The constant current is equal to the current which would flow in a short-circuit placed across the 
terminals and parallel resistance is the resistance of the network when viewed from these open- 
circuited terminals after all voltage and current sources have been removed and replaced by their 
internal resistances. 

 
 

Explanation 
Fig. 2.202 

As seen from Fig. 2.202 (a), a short is placed across the terminals A and B of the network with all 
its energy sources present. The short-circuit current ISC gives the value of constant-current source. 

For finding Ri, all sources have been removed as shown in Fig. 2.202 (b). The resistance of the 
network when looked into from terminals A and B gives Ri. 

The Norton’s* equivalent circuit is shown in Fig. 2.202 (c). It consists of an ideal constant- 
current source of infinite internal resistance (Art. 2.16) having a resistance of Ri connected in parallel 
with it. Solved Examples 2.96, 2.97 and 2.98 etc. illustrate this procedure. 

(ii) Another useful generalized form of this theorem is as follows : 

The voltage between any two points in a network is equal to ISC. Ri where ISC is the short- 
circuit current between the two points and Ri is the resistance of the network as viewed from these 
points with all voltage sources being replaced by their internal resistances (if any) and current 
sources replaced by open-circuits. 

Suppose, it is required to find the voltage across resistance R3 and hence current through it [Fig. 
2.202 (d)]. If short-circuit is placed between A and B, then current in it due to battery of e.m.f. E1 is 
E1/R1 and due to the other battery is E2/R2. 

 I = 
E1  

E2  E G 
  

 E G 
SC R1 R2

 1    1 2 2 

where G1 and G2 are branch conductances. 
Now, the internal resistance of the network as viewed from A and B simply consists of three 

resistances R1, R2 and R3 connected in parallel between A and B. Please note that here load resistance 
R3 has not been removed. In the first method given above, it has to be removed. 

 
 1 

=
 1  1  1  G1  G2  G3 

Ri R1 R2 R3 

 Ri = 
  1  

G1   G2  G3 


Current through R2 is I3 = VAB/R3. 
Solved example No. 2.96 illustrates this approach. 

* After E.L. Norton, formerely an engineer at Bell Telephone Laboratory, U.S.A. 

VAB = ISC.Ri = G1  G2  G3
 

E1G1  E2G2 
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Example 2.96. Determine the Thevenin and Norton equivalent circuits between terminals A 
and B for the voltage divider circuit of Fig. 2.203 (a). 

Example 2.97. Using Norton’s theorem, find the constant-current equivalent of the circuit shown 
in Fig. 2.204 (a). 

 How To Nortonize a Given Circuit ? 

This procedure is based on the first statement of the theorem given above. 

1. Remove the resistance (if any) across the two given terminals and put a short-circuit across 
them. 

2. Compute the short-circuit current ISC. 
3. Remove all voltage sources but retain their internal resistances, if any. Similarly, remove all 

current sources and replace them by open-circuits i.e. by infinite resistance. 

4. Next, find the resistance R1 (also called RN) of the network as looked into from the given 
terminals. It is exactly the same as Rth (Art. 2.16). 

5. The current source (ISC) joined in parallel across Ri between the two terminals gives Norton’s 
equivalent circuit. 

As an example of the above procedure, please refer to Solved Example No. 2.87, 88, 90 and 91 
given below. 

 

Solution. (a) Thevenin Equivalent Circuit 

Obviosuly, Vth = drop across R2 = E 
R2  

R1  R2 

When battery is replaced by a short-circuit. 

Fig. 2.203 

Ri    =  R1  || R2 = R1 R2/(R1  + R2) 
Hence, Thevenin equivalent circuit is as shown in Fig. 2.203 (b). 

(b) Norton Equivalent Circuit 

A short placed across terminals A and B will short out R2 as well. Hence, ISC = E/R1. The Norton 
equivalent resistance is exactly the same as Thevenin resistance except that it is connected in parallel 
with the current source as shown in Fig. 2.203 (c) 

Solution. When terminals A and B are short-circuited as shown in Fig. 2.204 (b), total resistance 
of the circuit, as seen by the battery, consists of a 10 resistance in series with a parallel combination 
of 10  and 15  resistances. 

   total resistance = 10  
15  10

 
15  10 

= 16 

 battery current I =100/16 = 6.25 A 
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Example 2.98. Apply Norton’s theorem to calculate current flowing through 5 –  resistor of 
Fig. 2.05 (a). 

 

 
Fig. 2.204 

This current is divided into two parts at point C of Fig. 2.204 (b). 

Current through A B is ISC = 6.25  10/25 = 2.5 A 
Since the battery has no internal resistance, the input resistance of the network when viewed 

from A and B consists of a 15  resistance in series with the parallel combination of 10  and 10 . 
Hence, R1  = 15 + (10/2) = 20 

Hence, the equivalent constant-current source is as shown in Fig. 2.204 (c). 

Solution. (i) Remove 5 –  resistor and put a short across terminals A and B as shown in  
Fig. 2.205 (b). As seen, 10  resistor also becomes short-circuited. 

(ii) Let us now find ISC.  The battery sees a parallel combination of 4  and 8 in series with a 
4  resistance.   Total resistance seen by the battery = 4 + 4 || 8 = 20/3 .   Hence, I = 20 +    20/3 = 
3 A. This current divides at point C of Fig. 2.205 (b). Current going along path CAB gives ISC. Its 
value = 3  4/12 = 1 A. 

Fig. 2.205 

(iii) In Fig. 2.205 (c), battery has been removed leaving behind its internal resistance which, in 
this case, is zero. 

Resistance of the network looking into the terminals A and B in Fig. 2.205 (d) is 

Ri = 10 || 10 = 5 
(iv) Hence, Fig. 2.205 (e), gives the Norton’s equivalent circuit. 
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Example 2.99. Find the voltage across points A and B in the network shown in Fig. 2.206 (a) by 
using Norton’s theorem. 

Example 2.100. Using Norton’s theorem, calculate the current flowing through the 15  load 
resistor in the circuit of Fig. 2.207 (a). All resistance values are in ohm. 

(v) Now, join the 5  resistance back across terminals A and B. The current flowing through 
it, obviously, is IAB = 1  5/10 = 0.5 A. 

Solution. The voltage between points A and B is VAB = ISC Ri 

where ISC = short-circuit current between A and B 
Ri = Internal resistance of the network as viewed from points A and B. 

When short-circuit is placed between A and B, the current flowing in it due to 50-V battery is 

=  50/50 = 1 A – from A to B 

Current due to 100 V battery is   =  100/20 = 5 A – from B to A 

ISC    =  1 5 =  4 A – from B to A 

Fig. 2.206 (a) Fig. 2.206 (b) 

Now, suppose that the two batteries are removed so that the circuit becomes as shown in Fig. 
2.206 (b). The resistance of the network as viewed from points A and B consists of three resistances 
of 10 , 20  and 50  ohm connected in parallel (as per second statement of Norton’s theorem). 

  1  
Ri 

=
 1    1    1  ;  

10 20 50 hence R1 = 
100 
17 

 VAB =  4  100/17 =  23.5 V 
The negative sign merely indicates that point B is at a higher potential with respect to the point A. 

Solution. (a) Short-Circuit Current ISC 

As shown in Fig. 2.207 (b), terminals A and B have been shorted after removing 15  resistor. 
We will use Superposition theorem to find ISC. 

(i) When Only Current Source is Present 

In this case, 30-V battery is replaced by a short-circuit. The 4 A current divides at point D 
between parallel combination of 4  and 6 . Current through 6  resistor is 

ISC    =  4   4/(4 + 6) = 1.6 A – from B to A 
(ii) When Only Battery is Present 

In this case, current source is replaced by an open-circuit so that no current flows in the branch 
CD. The current supplied by the battery constitutes the short-circuit current 

 Isc    =  30/(4 + 6) = 3 A – from A to B 

 Isc    =  Isc  Isc  = 3 1.6 = 1.4 A – from A to B 
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Example 2.101. Using Norton’s current-source equivalent circuit of the network shown in 
Fig. 2.208 (a), find the current that would flow through the resistor R2 when it takes the values of 12, 
24 and 36  respectivley. [Elect. Circuits, South Gujarat Univ.] 

 

 

 
(b) Norton’s Parallel Resistance 

Fig. 2.207 

As seen from Fig. 2.207 (c) R1 = 4 + 6 = 10 . The 8 resistance does not come into the picture 
because of an open in the branch CD. 

Fig. 2.207 (d) shows the Norton’s equivalent circuit along with the load resistor. 

IL    =  1.4   10 (10 + 15) = 0.56 A 

Solution. In Fig. 2.208 (b), terminals A and B have been short-circuited. Current in the shorted 
path due to E1 is = 120/40 = 3 A from A to B. Current due to E2 is 180/60 = 3 A from A to B. Hence 
ISC = 6A. With batteries removed, the resistance of the network when viewed from open-circuited 
terminals is = 40 || 60 = 24 . 

(i) When RL    = 12  IL = 6  24 (24 + 12) = 4 A 

(ii) When RL    = 24  IL = 6/2 = 3 A. 

(iii) When RL    =  36  IL = 6  24/(24 + 36) = 2.4 A. 

Fig. 2.208 

 

Example 2.102. Using Norton’s theorem, calculate the current in the 6-resistor in the network 
of Fig. 2.209 (a). All resistance are in ohms. 



150 Electrical Technology 
 

SC

 

 
Fig. 2.209 

Solution. When the branch containing 6  resistance is short-circuited, the given circuit is 
reduced to that shown in Fig. 2.209 (b) and finally to Fig. 2.209 (c). As seen, the 12 A current 
divides into two unequal parts at point A. The current passing through 4  resistor forms the short- 
circuit current ISC. 

Resistance Ri between points C and D when they are open-circuited is 

R   =   
(4 8) (10 2) 

6
 

i (4 8) (10 2) 

It is so because the constant-current source has infinite resistance i.e., it behaves like an open 
circuit as shown in Fig. 2.209 (d). 

Hence, Norton’s equivalent circuit is as shown in Fig. 2.209 (e). As seen current of 8 A is 
divided equally between the two equal resistances of 6  each. Hence, current through the required 
6  resistor is 4 A. 

 

ISC 
= 12  8  8 A 

8  4 
 

 
Solution. For case of understanding, the given circuit may be redrawn as shown in Fig. 2.210 

(b). Total current in short-circuit across ON is equal to the sum of currents driven by different batter- 
ies through their respective resistances. 

 

I =   10   20  30  5.5 A 
5 10 20 

The resistance Ri of the circuit when looked into from point N and O is 
 

 1 
= 1  1  1  7 ; R  20   2.86 

Ri 5 10 20 20 i 7 

Fig. 2.210 

Example 2.103. Using Norton’s theorem, find the current which would flow in a 25   resistor 
connected between points N and O in Fig. 2.210 (a). All resistance values are in ohms. 
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Example 2.105.  For the circuit shown in Fig. 2.214 (a), calculate the current in the 6  resis- 
tance by using Norton’s theorem. (Elect. Tech. Osmania Univ. Feb. 1992) 

 

 
Solution.  For solving this circuit, we will Nortonise the circuit to the left to the terminals 1 1

and to the right of terminals 2 2 , as shown in Fig. 2.212 (b) and (c) respectively. 

Fig. 2.212 

 
Fig. 2.213 

The two equivalent Norton circuits can now be put back across terminals 11   and   22 , as 
shown in Fig. 2.213 (a). 

The two current sources, being in parallel, can be combined into a single source of 7.5 + 2.5 = 
10 A. The three resistors are in parallel and their equivalent resistances is 2 || 4 || 4 = 1 . The value 
of Vo as seen from Fig. 2.213 (b) is Vo = 10  1 = 10 V. 

 

 
Fig. 2.214 

Hence, given circuit reduces to that 
shown in Fig. 2.211 (a). 

Open-circuit voltage across NO is = ISCRi 

= 5.5  2.86 = 15.73 V 
Hence, current through 25- resistor con- 

nected across NO is [Fig. 2.211 (b)] 

I = 15.73/25 = 0.65 A 

or I = 5.5     2.86  
2.86    25 0.56 A. 

Example  2.104.   With the help of 
Norton’s theorem, find Vo in the circuit shown 
in Fig. 2.212 (a). All resistances are in ohms. 

Fig. 2.211 
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

Example 2.106. Find the Norton equivalent for the transistor amplifier circuit shown is Fig. 
2.215 (a). All resistances are in ohms. 

Solution. As explained in Art. 2.19, we will replace the 6  resistance by a short-circuit as 
shown in Fig. 2.214 (b). Now, we have to find the current passing through the short-circuited termi- 
nals A and B. For this purpose we will use the mesh analysis by assuming mesh currents I1 and I2. 

From mesh (i), we get 

3  4 I1   4 (I1   I2) + 5  =  0    or    2 I1  I2 = 2 ...(i) 
From mesh (ii), we get 

 2 I2   4  5 4 (I2   I1)  =  0    or    4 I1   6 I2 = 9 ...(ii) 
From (i) and (ii) above, we get I2 = 5/4 
The negative sign shows that the actual direction of flow of I2 is opposite to that shown in Fig. 

2.214 (b). Hence, Ish = IN = I2 = 5/4 A i.e. current flows from point B to A. 
After the terminals A and B are open-circuited and the three batteries are replaced by short- 

circuits (since their internal resistances are zero), the internal resistance of the circuit, as viewed from 
these terminals’ is 

Ri  =  RN = 2 + 4 || 4 = 4 
The Norton’s equivalent circuit consists of a constant current source of 5/4 A in parallel with a 

resistance of 4  as shown in Fig. 2.214 (c). When 6  resistance is connected across the equivalent 
circuit, current through it can be found by the current-divider rule (Art). 

Current through 6 resistor = 
5  4  0.5 from B to A. 
4 10 

 General instructions For Finding Norton Equivalent Circuit 

Procedure for finding Norton equivalent circuit of a given network has already been given in Art. 
That procedure applies to circuits which contain resistors and independent voltage or current sources. 
Similar procedures for circuits which contain both dependent and independent sources or only 
dependent sources are given below : 

(a) Circuits Containing Both Dependent and Independent Sources 

(i) Find the open-circuit voltage vwith all the sources activated or ‘alive’. 
(ii) Find short-circuit current ish by short-circuiting the terminals a and b but with all sources 

activated. 

(iii) RN = Voc/ish 

(b) Circuits Containing Dependent Sources Only 

(i) ish = 0. 

(ii) Connect 1 A source to the terminals a and b calculate vab. 

(iii) RN = vab/1. 

Fig. 2.215 
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Example 2.107. Using Norton’s theorem, compute current through the 1- resistor of Fig. 
2.216. 

Solution. We have to find the values of ish and RN. It should be noted that when terminals a and 
b are short-circuited, vab = 0. Hence, in that case, we find from the left-hand portion of the circuit that 
i = 2/200 = 1/100A = 0.01 A. As seen from Fig. 2.215 (b), the short-circuit across terminals a and b, 
short circuits 20  resistance also. Hence, ish = 5 i = 5  0.01 = 0.05 A. 

Now, for finding RN, we need voc = vab from the left-hand portion of the Fig. 2.215 (a). Applying 
KVL to the closed circuit, we have 

2   200 i  vab  =  0 ...(i) 
Now, from the right-hand portion of the circuit, we find vab = drop over 20 resistance = 20 

5i = 100 i. The negative sign is explained by the fact that currert flows from point b towards point 
a. Hence, i = vb/100. Substituting this value in Eqn. (i). above, we get 

2  200 ( vb/100)  vab    =  0    or vab = 2 V 

 RN = vab/ish = 2/0.05 = 40 
Hence, the Norton equivalent circuit is as shown in Fig. 2.215 (c). 

Solution. We will employ source conversion technique to simplify the given circuit. To begin 
with, we will convert the three voltge sources into their equivalent current sources as shown in Fig. 
2.216 (b) and (c). We can combine together the two current sources on the left of EF but cannot 
combine the 2-A source across CD because of the 3- resistance between C and E. 

Fig. 2.216 

In Fig. 2.217 (b), the two current sources at the left-hand side of 3 resistor have been replaced 
by a single (2 A + 1 A) = 3 A current source having a single parallel resistance 6 || 6 = 3 . 
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Example 2.108.   Obtain Thevenin’s  and Norton’s  equivalent circuits at AB shown in  Fig. 
2.218 (a). [Elect. Network, Analysis Nagpur Univ. 1993] 

 

 
Fig. 2.217 

We will now apply Norton’s theorem to the circuit on the left-hand side of CD [Fig. 2.217 (c)] 
to convert it into a single current source with a single parallel resistor to replace the two 3 resistors. 
As shown in Fig. 2.217 (d), it yields a 1.5 A current source in parallel with a 6  resistor. This current 
source can now be combined with the one across CD as shown in Fig. 2.217 (e). The current through 
the 1- resistor is 

I   =  3.5  4/(4 + 1) = 2.8 A 

Solution. Thevenin’s Equivalent Circuit 
We will find the value of Vth by using two methods (i) KVL and (ii) mesh analysis. 

 
 

(a) Using KVL 

Fig. 2.218 

If we apply KVL to the first loop of Fig. 2.218 (a), we get 
80 5 x  4y   =  0    or    5x + 4y = 80 ...(i) 

From the second @ loop, we have 
11 (x y) + 20 + 4y   =  0    or    11x  15y  = 20 ...(ii) 

From (i) and (ii), we get x = 10.75 A; y = 6.56 A and (x y) = 4.2 A. 
Now, Vth = VAB i.e. voltage of point A with respect to point B. For finding its value, we start from 

point B and go to point A either via 3  resistance or 4  resistance or (5 + 8) = 13  resistance and 
take the algebraic sum of the voltage met on the way. Taking the first route, we get 

VAB = 20 + 3 (x y) = 20 + 3  4.2 = 7.4 V 
It shows that point A is negative with respect to point B or, which is the same thing, point B is 

positive with respect to point A. 
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Example 2.109. Find current in the 4 ohm resistor by any three methods. 
[Bombay University 2000] 

(b) Mesh Analysis [Fig. 2.218 (b)] 

Here, R11 = 9 ; R22 = 15; R21 = 4 

 9  4 I1 = 80 ;   135  16  119 
 4 15 I2 

1 = 

20 

80     4 
20   15 

 
 1280; 

 
2 


9 80 
 4   20 

 
 500 

I1 = 1280/119 = 10.75 A ; I2 = 500/119 = 4.2 A 

Again VAB = 20 + 12.6 = 7.4 V 
Value of Rth 

For finding Rth, we replace the two voltage sources by short-circuits. 

 Rth = RAB = 3 || (8 + 4 || 5) = 2.32 
The Thevenin’s equivalent circuit becomes as shown in Fig. 2.219 (c). It should be noted that 

point B has been kept positive with respect to point A in the Fig. 

 

Fig. 2.219 

Solution. Method 1 : Writing down circuit equations, with given conditions, and marking 
three clockwise loop-currents as i1, i2 and i3. 

i1 = 5 A, due to the current source of 5 Amp 
VA VB =  6 V, due to the voltage source of 6 Volts 

i3  i2 = 2 A, due to the current source of 2 Amp. 

VA = (i1 i2) 2, VB = i3  4 
With these equations, the unknowns can be evaluated. 

2 (i1 i2) 4 i3 = 6, 2 (5 i2) 4 (2 + i2) = 6 

This gives the following values : i2 = 2/3 Amp., i3 = 4/3 Amp. 
VA     =  34/3 volts, VB  = 16/3 volts 

Method 2 : Thevenin’s theorem : Redraw the circuit with modifications as in Fig. 2.219 (b) 

RTH    =  + 14 6 = 8  V 
RTH = 2 ohms, looking into the circuit form X-Y terminals after de-

activating the sources 

IL = 8/(2 + 4) = 4/3 Amp. 
Method 3 : Norton’s Theorem : Redraw modifying as in Fig. 2.219 (c) 

IN = 2 + 2 = 4 Amp. 
This is because, X and Y are at ground potential, 2-ohm resistor has to carry 3 A and hence from 

5-Amp. source, 2-Amp current is driven into X-Y nodes. 

RN = 2 ohms 
Then the required current is calculated as shown in Fig. 2.219 (d) 
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Example 2.109. (a). Find Mesh currents i1 and i2 
in the electric circuit of Fig. 2.219 (m) 

[U.P. Tech. University, 2001] 

Note : One more method is described. This transforms the sources such that the current through 4-ohm 
resistor is evaluated, as in final stage shown in Fig. 2.219 (j) or in Fig. 2.219 (k). 

Example 2.109 (b). Determine current through 6 ohm resistance connected across A-B termi- 
nals in the electric circuit of – 2.219 (n), using Thevenin’s Theorem. [U.P. Tech. Univ. 2001] 

 

 
Fig. 2.219 (c)   Evaluation of IN Fig. 2.219 (d) 

Fig. 2.219 (e) Fig. 2.219 (f) Fig. 2.219 (h) 

 

Fig. 2.219 (j) Fig. 2.219 (k) 
 
 
 
 

Solution. Mark the nodes as shown in Fig. 2.219 (m). 

Treat O as the reference node. 

From the dependent current source of 3i1 amp 
between B and O, 

i2  i1  = 3i1      or    4i1 = i2 ...(a) 
VB is related to VA, VC and the voltage across resis- 

tors concerned 

 
 
 
 
 
 
 
 

Fig. 2.219 (m) 

VB = VA i1  1 = 4 i1 

VB = VC + i2  2 = 3 + 2i2 

Hence 4  i1    =  3 + 2i2 ...(b) 
From equations (a) and (b) above, i1 = 1/9 amp and i2 = 4/9 amp 
Substituting these, VB = 35/9 volts 
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Example 2.109 (c). Applying Kirchoff ’s Current Law, determine current Is in the electric circuit 
of Fig. 2.219 (p).  Take Vo = 16 V. [U.P. Tech. Univ. 2001] 

 

 
Fig. 2.219 (n) 

Solution. Applying Thevenin’s theorem, after detaching the 6-ohm resitor from terminals 
A  B, 

VTH = VC = 15 1  3 = 12 volts 
RTH = 4 + 3/6 = 6 ohms 

IL = 12/(6 + 6) = lamp 

Fig. 2.219 (p) 

Solution. Mark the nodes A, B, and O and the currents associated with different branches, as in 
Fig. 2.219 (p). 

Since V0 = 16 V, the current through 8-ohm resistor is 2 amp. 
KCL at node B : 1/4 V1    =  2 + ia ...(a) 
KCL at node A : Is  + ia   =  V1/6 ...(b) 
Further, VA     =  V1, VB  = 16, VB  V1 = 4ia ...(c) 
From (a) and (c), ia = 1 amp. This gives V1 VA = 12 volts, and IS = 1 amp 
The magnitude of the dependent current source = 3 amp 
Check : Power from 1 amp current source = 1  12 = 12 W 
Power from dependent C.S. of 3 A = 3  16 = 48 W 
Sum of source-output-power = 60 watts 
Sum of power consumed by resistors = 22  6 + 12  4 + 22  8 = 60 watts 
The power from sources equal the consumed by resistors. This confirms that the answers obtained 

are correct. 

Norton’s Equivalent Circuit 
For this purpose, we will short-circuit the terminals A and B find the short-circuit currents produced 

by the two voltage sources. When viewed from the side of the 80-V source, a short across AB short- 
circuits everything on the right side of AB. Hence, the circuit becomes as shown in Fig. 2.230 (a). 
The short-circuit current I1 can be found with the help of series-parallel circuit technique. The total 
resistance offered to the 80 V source is 5 + 4 || 8 = 23/3 . 
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Example 2.110. Use Millman’s theorem, to find the common voltage across terminals A and B 
and the load current in the circuit of Fig. 2.222. 

 I = 80 × 3/23 = 10.43 A;  I1 = 10.43 × 4/12 = 3.48 A. 
When viewed from the side of the 20-V source, a short across AB short-circuits everything beyond 

AB. In the case, the circuit becomes as shown in Fig. 2.230 (b). The short circuit current flowing 
from B to A = 20/3 = 6.67 A. 

Fig. 2.220 

Total short-circuit current  =  6.67 – 3.48 = 3.19 A ... from B to A. 

RN = Rth = 3 || (8 + 4 || 5) = 2.32 
Hence, the Norton’s equivalent circuit becomes as shown in Fig. 2.220 (c). 

 

 Millman’s Theorem 

This theorem can be stated either in terms of voltage sources or current sources or both. 

(a) As Applicable to Voltage Sources 

This Theorem is a combination of Thevenin’s and Norton’s theorems. It is used for finding the 
common voltage across any network which contains a number of parallel voltage sources as shown in 
Fig. 2.221 (a). Then common voltage VAB which appears across the output terminals A and B is 
affected by the voltage sources E1, E2 and E3. The value of the voltage is given by 

 
 

This voltage represents the Thevenin’s voltage Vth. The resistance Rth can be found, as usual, by 
replacing each voltage source by a short circuit. If there is a load resistance RL across the terminals A 
and B, then load current IL is given by 

  IL = Vth/(Rth + RL)  
If as shown in Fig. 2.222 (b), a branch does not contain any voltage source, the same procedure 

is used except that the value of the voltage for that branch is equated to zero as illustrated in Example 
2.210. 

 
Fig. 2.221 Fig. 2.222 

VAB = 
E / R  E / R  E / R 

1 1 2 2 3 3 
I1  I2  I 3 I  

1/ R1   1/ R2   1/ R3 G1   G2   G3 G 

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Solution. As per Millman’s Theorem, 

VAB 
= 

6/ 2  0 / 6  12 / 4  6  6.55 V
 

1/ 2  1/ 6  1/ 4 11/12 

 Vth = 6.55 V 

Rth = 2 || 6 || 4 = 12/11 

IL = 
Vth 

Rth  RL 

 6.55  1.05 A 
(12 /11)  5 

(b) As Applicable to Current Sources 
This theorem is applicable to a mixture of parallel voltage and current sources that are reduced 

to a single final equivalent source which is either a constant current or a constant voltage source. This 
theorem can be stated as follows : 

Any number of constant current sources which are directly connected in parallel can be converted 
into a single current source whose current is the algebraic sum of the individual source currents and 
whose total internal resistances equals the combined individual source resistances in parallel. 

 
 

Solution. First thing to do is to convert the given voltage sources into equivalent current sources. 
It should be kept in mind that the two batteries are connected in opposite direction. Using source 
conversion technique given in Art. 1.14 we get the circuit of Fig. 2.223 (b). 

Fig. 2.223 

The algebraic sum of the currents = 5 + 3 4 = 4 A. The combined resistance is = 12 || 4 || 6 = 
2 . The simplified circuit is shown in the current–source form in Fig. 2.224 (a) or voltage source 
form in Fig. 2.224 (b). 

 
 

As seen from Fig. 2.224 (c). 

Fig. 2.224 

IL = 8/(2 + 8) = 0.8 A ; VL = 8  0.8 = 64 V 
Alternatively, VL = 8  8/(2 + 8) = 6.4 V 
Following steps are necessary when using Millman’s Theorem : 
1. convert all voltage sources into their equivalent current sources. 

2. calculate the algebraic sum of the individual dual source currents. 

Example 2.111. Use Millman’s theorem, to find the voltage across and current through the load 
resistor RL in the circuit of Fig. 2.223 (a). 
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Example 2.112. Use Millman’s theorem to 
calculate the voltage developed across the 
40  resistor in the network of Fig. 2.226. 

 
 
 
 

   

V00    = 
V01G 1  V02G2   V03G3   ...........  V0n Gn 

G   G    G   ..............  G 1 2 3 n 

3. if found necessary, convert the final current source into its equivalent voltage source. 

As pointed out earlier, this theorem can also be applied to voltage sources which must be initially 
converted into their constant current equivalents. 

 Generalised Form of Millman’s Theorem 

This theorem is particularly useful for solving many circuits 
which are frequently encountered in both electronics and power 
applications. 

Consider a number of admittances G1, G2, G3... Gn which 
terminate at common point 0  (Fig. 2.225).  The other ends of 
the admittances are numbered as 1, 2, 3. n.  Let O be any other 
point in the network. It should be clearly understood that it is 
not necessary to know anything about the inter-connection 
between point O and the end points 1, 2, 3. n. However, what is 
essential to know is the voltage drops from 0 to 1, 0 to 2, ... 0 to 
n etc. 

According to this theorem, the voltage drop from 0 to 0  (Voo) is given by 
V01G 1  V02G2  V03G3  ...  V0nG  

Fig. 2.225 

 

Proof 

Voo    =   n  

G1   G2   G3   .........  Gn 

 

Voltage drop across G1    =  V10  = (V00  V01) 

Current through G1    =  I10  = V10 G1 = (V00  V01) G1 

Similarly, I20  = (V00  V02) G2 

I30  = (V00  V03) G3 

................................... 

................................... 

and In0  = (V00  V0n) Gn 

By applying KCL to point 0 , we get 

I10  + I20  + ...... + In0  = 0 
Substituting the values of these currents, we get 

Precaution 

It is worth repeating that only those resis- 
tances or admittances are taken into consider- 
ation which terminate at the common point. All 
those admittances are ignored which do not ter- 
minate at the common point even though they 
are connected in the circuit. 

 
 

Fig. 2.226 
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Example 2.113. Calculate the voltage across the 10 
resistor in the network of Fig. 2.227 by using (a) Millman’s 
theorem (b) any other method. 

Solution.  Let the two ends of the 40   resistor be marked as 0 and 0 .  The end points of the 
three  resistors  terminating  at  the  common  point  0    have  been  marked  1,  2  and  3.    As 
already explained in Art. 2.29, the two resistors of values 10  and 60  will not come into the 
picture because they are not direclty connected to the common point 0  . 

Here, 

V01  = 150 V; V02 = 0; V03 = 120 V 

G1    =  1/50 ; G2 = 1/40 :    G3 = 1/20 

 V  = 
( 150 / 50)  (0 / 40)  (120 / 20)  31.6 V

 
00 (1/ 50)  (1/ 40)  (1/ 20) 

It shows that point 0 is at a higher potential as compared to point 0 . 
 
 
 

Solution. (a) As shown in the Fig. 2.227 we are re- 
quired to calculate voltage V00 .  The four resistances are 
connected to the common terminal 0  . 

Let their other ends be marked as 1, 2, 3 and 4 as shown 
in Fig. 2.227. Now potential of point 0 with respect to point 
1 is (Art. 1.25) – 100 V because (see Art. 1.25) 

 
 
 
 
 
 

Fig. 2.227 

 V01    =  – 100 V; V02 = – 100 V ; V03 = 0V; V04 = 0V. 
G1    =  1/100 = 0.01 Siemens ; G2 = 1/50 = 0.02 Siemens; 

G3    =  1/100 = 0.01 Siemens; G4 = 1/10 = 0.1 Siemens 

 V00    = 
V01 G1  V02G2  V03G3  V04G4 

G1  G2  G3  G4 

   100    0.01    (   100)    0.02    0.    0.01  0   0.1  3  
= 0.01    0.02   0.01   0.1 0.14 

Also, V00    =   V00   = 21.4 V 

21.4 V 

(b) We could use the source conversion technique (Art. 2.14) to solve this question. As shown 
in Fig. 2.228 (a), the two voltage sources and their series resistances have been converted into current 
sources with their parallel resistances. The two current sources have been combined into a single 
resistance current source of 3 A and the three parallel resistances have been combined into a single 
resistance of 25 . This current source has been reconverted into a voltage source of 75 V havinga 
series resistance of 25  as shown in Fig. 2.228 (c). 

Fig. 2.228 

Using the voltage divider formula (Art. 1.15), the voltage drop across 10  resistance is 

V0 0 = 75  10/(10 + 25) = 21.4 V. 
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V00  = VAB = 
(50/50) 

(1/50) 

Since the answer comes out
pared to point B. 

The detailed reason for not taking any notice of 40 

 Maximum Power Transfer

Although applicable to all
for analysing communication networks. The overall efficiency of a network supplying maximum 
power to any branch is 50 per cent.
sion and distribution networks is limited because, in their case, the goal is high efficiency and not 
maximum power transfer. 

However, in the case of electronic
receive or transmit maximum power
is only a few milliwatts or microwatts. Frequently, the problem of maximum power transfer is of 
crucial significance in the operation
antennas. 

As applied to d.c. networks, this theorem may be stated 
follows : 

A resistive load will abstract maximum power from 
network when the load resistance is equal to the resistance of 
the network as viewed from the
sources removed leaving behind their internal

In Fig. 2.230 (a), a load resistance
the terminals A and B of a network

of e.m.f.  E and internal resistance 
which, in fact, represents the lumped
wires. Let Ri = Rg + R = internal resistance of the network as viewed from 

According to this theorem, 

Proof. Circuit current 

Power consumed by the load

For PL to be maximum, 
dP
dR

Example 2.114. In the network
the voltage between A and B. 

Solution. The end points of the different admittances 
which are connected directly to the common point 
been marked as 1, 2 and 3 as
Incidentally, 40  resistance will not be taken into consider
because it is not directly connec
point  B.  Here  V01  =  VA1  =  
V03 = VA3 = 0 V. 

Technology 

 (100/20)  (0/10) 
(1/50)  (1/20)  (1/10) 

 
= 23.5 V 

Fig. 2.229 

out to be positive, it means that point A is at a higher potential

The detailed reason for not taking any notice of 40  resistance are given in Art. 2.29.

Maximum Power Transfer Theorem 

all branches of electrical engineering, this theorem is particularly
for analysing communication networks. The overall efficiency of a network supplying maximum 

cent. For this reason, the application of this theorem to power
sion and distribution networks is limited because, in their case, the goal is high efficiency and not 

electronic and communication networks, very often, the goal
power (through at reduced efficiency) specially when power

is only a few milliwatts or microwatts. Frequently, the problem of maximum power transfer is of 
operation of transmission lines and 

works, this theorem may be stated as 

resistive load will abstract maximum power from a 
network when the load resistance is equal to the resistance of 

the output terminals, with all energy 
behind their internal resistances. 

resistance of RL is connected across 
network which consists of a generator 

and internal resistance Rg  and a series resistance  R 
lumped resistance of the connecting 

Fig. 2.230 

= internal resistance of the network as viewed from A and B. 

According to this theorem, RL will abstract maximum power from the network when 

 I = 

Power consumed by the load is 

  E  
RL  Ri 

 
2 

 
 

E 2R   
PL = I RL = L 

 

(RL  Ri ) 

dPL 

dRL 
= 0. 

network shown in Fig. 2.229, using Millman’s theorem, or otherwise
 (Elect. Engg. Paper-I Indian Engg. Services

The end points of the different admittances 
which are connected directly to the common point B have 

as shown in the Fig. 2.229. 
resistance will not be taken into consider- ation 

connected to the common 
=  50  V ;  V02  =  VA2  =  100 V ; 

2

potential as com- 

resistance are given in Art. 2.29. 

particularly useful 
for analysing communication networks. The overall efficiency of a network supplying maximum 

power transmis- 
sion and distribution networks is limited because, in their case, the goal is high efficiency and not 

goal is either to 
power involved 

is only a few milliwatts or microwatts. Frequently, the problem of maximum power transfer is of 

will abstract maximum power from the network when RL = Ri. 

...(i) 

otherwise find 
Services 1990) 
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

1

Example 2.115. In the network shown in Fig. 2.231 (a), find the value of RL such that maximum 
possible power will be transferred to RL. Find also the value of the maximum power and the power 
supplied by source under these conditions. (Elect. Engg. Paper I Indian Engg. Services) 

Example 2.116. In the circuit shown in Fig. 2.232 (a) obtain the condition from maximum 
power transfer to the load RL. Hence determine the maximum power transferred. 

(Elect. Science-I Allahabad Univ. 1992) 

Differentiating Eq. (i) above, we have 
dPL = 2  1    2  2 

 1  2RL 


dRL 
E  

(R  R )2 
 RL  (R  R )3 

  E
 

 
(R  R )2 

 
(R  R )3 




 L i 
 

 L i   L i L i 
 0 = E 2 

 1  2RL  or 2R  = R + R  or R = R  
(R   R )2 (R  R )3 


 L L i L i 

 L i L i 
It is worth noting that under these conditions, the voltage across the load is hold the open-circuit 

voltage at the terminals A and B. 

 



Let us consider an a.c. source of internal impedance (R1 + j X1) supplying power to a load 

impedance (RL + jXL). It can be proved that maximum power transfer will take place when the 
modules of the load impedance is equal to the modulus of the source impedance i.e. | ZL | = | Z1 | 

Where there is a completely free choice about the load, the maximum power transfer is obtained 
when load impedance is the complex conjugate of the source impedance. For example, if source 
impedance is (R1 + jX1), then maximum transfer power occurs, when load impedance is (R1 jX1). It 
can be shown that under this condition, the load power is = E2/4R . 

 

Solution. We will remove RL and find the equivalent Thevenin’s source for the circuit to the left 
of terminals A and B. As seen from Fig. 2.231 (b) Vth equals the drop across the vertical resistor of 3 
because no current flows through 2  and 1 resistors. Since 15 V drops across two series resistors 
of 3 each, Vth = 15/2 = 7/5 V. Thevenin’s resistance can be found by replacing 15 V source with a 
short-circuit. As seen from Fig. 2.231 (b), Rth = 2 + (3 || 3) + 1 = 4.5 . Maximum power transfer to 
the load will take place when RL = Rth = 4.5 . 

 

 
Maximum power drawn by RL 

 
= Vth 

 
2 /4  R 

Fig. 2.231 

= 7.52/4 × 4.5 = 3.125 W. 

Since same power in developed in Rth, power supplied by the source = 2  3.125 = 6.250 W. 

Max. power is P L max. =   L 
E2 R E2 E2 

4 R2 L 4 RL 4 Ri 


L
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th L

Example 2.117. Calculate the value of R which will absorb maximum power from the circuit of 
Fig. 2.234 (a). Also, compute the value of maximum power. 

 

 
Fig. 2.232 

Solution. We will find Thevenin’s equivalent circuit to the left of 
trminals A and B for which purpose we will convert the battery source 
into a current source as shown in Fig. 2.232 (b). By combining the two 
current sources, we get the circuit of Fig. 2.232 (c). It would be seen that 
open circuit voltage VAB equals the drop over 3resistance because there 
is no drop on the 5resistance connected to terminal A. Now, there are 
two parallel path across the current source each of resistance 5 . Hence, 
current through 3  resistance equals 1.5/2 = 0.75 A. Therefore, VAB = 
Vth = 3  0.75 = 2.25 V with point A positive with respect to point B. 

For finding RAB, current source is replaced by an infinite resistance. 

 RAB   = Rth = 5 + 3 | | (2 + 5) = 7.1 












Fig. 2.233 

The Thevenin’s equivalent circuit alongwith RL is shown in Fig. 2.233. As per Art. 2.30, the 
condition for MPT is that RL = 7.1 . 

Maximum power transferred = V 2  4R = 2.252/4  7.1 = 0.178 W = 178 mW. 

Solution. For finding power, it is essential to know both I and R. Hence, it is essential to find an 
equation relating I to R. 

 

Fig. 2.234 
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L

L i

Let us remove R and find Thevenin’s voltage Vth across A and B as shown in Fig. 2.234 (b). It 
would be helpful to convert 120 V, 10-source into a constant-current source as shown in Fig. 2.234 
(c). Applying KCL to the circuit, we get 

Vth    
Vth 

10 5 
= 12 + 6 or Vth 

 
= 60 V 

Now, for finding Ri and Rth, the two sources are reduced to zero. Voltage of the voltage-source is 
reduced to zero by short - circuiting it whereas current of the current source is reduced to zero by 
open-circuiting it. The circuit which results from such source suppression is shown in Fig. 2.234 (d). 
Hence, Ri = Rth = 10 || 5 = 10/3 . The Thevenin’s equivalent circuit of the network is shown in Fig. 
2.234 (e). 

According to Maximum Power Transfer Theorem, R will absorb maximum power when it equals 
10/3 . In that case, I = 60 ÷ 20/3 = 9 A 

P = I2R = 92  10/3 = 270 W 

 Power Transfer Efficiency 

If PL is the power supplied to the load and PT is the total power supplied by the voltage source, 
then power transfer efficiency is given by = PL/PT. 

Now, the generator or voltage source E supplies power to both the load resistance RL and to the 
internal resistance Ri = (Rg + R). 

2 2 
PT   =  PL + Pi    or    E   I = I R  + I R 

 




The variation of with RL is shown in Fig. 2.235 (a). The maximum value of is unity when 
RL = and has a value of 0.5 when RL = Ri. It means that under maximum power transfer conditions, 
the power transfer efficiency is only 50%. As mentioned above, maximum power transfer condition 
is important in communication applications but in most power systems applications, a 50% efficiency 
is undesirable because of the wasted energy. Often, a compromise has to be made between the load 
power and the power transfer efficiency. For example, if we make RL = 2 Ri, then 

P =  0.222 E2/R and    = 0.667. 

It is seen that the load power is only 11% less than its maximum possible value, whereas the 
power transfer efficiency has improved from 0.5 to 0.667 i.e. by 33%. 

Fig. 2.235 

 =    L 
P I 2R 

PT I RL  I Ri 
2 

L 
2  L 

R 1 
RL  Ri 1  (Ri / RL ) 

i
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2 i 1 R

i

i 1 2 

1 1 2 2 1 2

1

  i i     1 2  

voltage source having an internal resistance of R . Prove that (a) R 2 = R R and (b)  +  = 1. 
Example 2.119. Two load resistance R1 and R2 dissipate the same power when connected to a 

i i 1   2 1 2 

 

 
Solution. We can find the values of E and Ri from the two given load conditions. 
(a) When RL  = 5 , I = 4 A and V = IRL  = 4   5 = 20 V,  then 20 = E 4 Ri  ...(i) 
When RL  = 20 ,  I = 2 A and V = IRL  = 2   20 = 40 V       40 = E 2 Ri ...(ii) 
From (i) and (ii), we get, Ri = 10  and E = 60 V 
When RL = Ri = 10 

PL max = 
E2 

4Ri 
 

60  60 
4  10 

= 90 W 

(b) When RL = 20 , the power transfer efficiency is given by 

  = 
RL 

RL  Ri 
 20 

30 
= 0.667 or 66.7% 

(c) For finding the efficiency corresponding to a load power of 60 W, we must first find the 
value of RL. 

 E 2 
Now, PL =  R  R  RL

 

   i L 

602  R 2  60  =  L or RL 40 RL + 100 = 0 
2 

(RL   10) 

Hence RL    =  37.32    or 2.68 
Since there are two values of RL, there are two efficiencies corresponding to these values. 

 
 

 =       37.32  = 0.789    or   78.9%,  =
 2.68 

 = 0.211 or 21.1% 
1 37.32  10 2 12.68 

It will be seen from above, the 1 + 2 = 1. 

Solution. (a) Since both resistances dissipate the same amount of power, hence 
 

E 2R E2R 
PL = 1   

2  
 2 

2
 

(R1   Ri ) (R2   Ri ) 

Cancelling E2 and cross-multiplying, we get 
R R 2 + 2R R R + R R 2 = R R 2 + 2R R R + R 

i 1 i 2 i 

Simplifying the above, we get, R 2 = R R 

(b) If 1 and 2 are the two efficiencies corresponding to the load resistances R1 and R2, then 

R1  
R2  

2 R1 R2  Ri (R1  R2) 
   

1 + 2 = R1   Ri R2  Ri R R  R2  R (R  R ) 
 

Substituting R 2 = R R , we get 

 
 + 

1   2 i i 1 2 

2 R2  R (R  R ) = = 1 
1 2 2R2  R (R  R ) 

i i 1 2 

Example 2.118. A voltage source delivers 4 A when the load connected to it is 5 and 2 A when 
the load becomes 20 . Calculate 

(a) maximum power which the source can supply (b) power transfer efficiency of the source 
with RL of 20  (c) the power transfer efficiency when the source delivers 60 W. 

2

2
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Example 2.121. For the circuit shown below, what will be the value of RL to get the maximum 
power ?  What is the maximum power delivered to the load ? [Bombay University 2001] 

 

 
 

 
Fig. 2.236 (a) 

Solution. This can be attempted by Thevenin’s Theorem. As in the circuit, with terminals A and 
B kept open, from the right hand side, VB (w.r. to reference node 0) can be calculated V4 and V5 will 
have a net voltage of 2 volts circulating a current of (2/8) = 0.25 amp in clockwise direction. 

VB = 10 0.25  2 = 9.5 volts. 
On the Left-hand part of the circuit, two loops are there. VA (w.r. to 0) has to be evaluated. Let 

the first loop (with V1 and V2 as the sources) carry a clockwise current of i1 and the second loop (with 
V2 and V3 as the sources), a clockwise current of i2. Writing the circuit equations. 

8i  4i2 = + 4 
4i + 8i2 = + 4 

This gives i1 = 1 amp, i2 = 1 amp 
Therefore, VA = 12 + 3   1 = 15 volts. 
Thevenin voltage, VTH = VA VB = 15 9.5 = 5.5 volts 

Fig. 2.236 (b) Fig. 2.236 (c) 

Solving as shown in Fig. 2.236 (b) and (c). 

RTH = 3 ohms 
For maximum power transfer, RL = 3 ohms 
Current = 5.5/6 = 0.9167 amp 

Power transferred to load 0.91672  3 = 2.52 watts. 
 

 
Solution. Detach RL and apply Thevenin’s 

Theorem. 

VTH = 5.696 volts, RTH = 11.39 
RL must be 11.39 ohms for maximum power 

transfer. 

Pmax = 0.712 watt. 

 
 
 
 
 
 
 

Fig. 2.237 

Example 2.120. Determine the value of R1 for maximum power at the load. Determine maxi- 
mum power also.  The network is given in the Fig. 2.236 (a). [Bombay University 2001] 
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Example 2.122. Find the maximum power in ‘RL’ which is variable in the circuit shown below 
in Fig. 2.238. [Bombay University, 2001] 

Solution. Apply Thevenin’s theorem. For this 
RL has to be detached from nodes A and B. Treat O 
as the reference node. 

VA = 60 V, VB = VC + 2 = 50 + 2 = 52 V 

Thus, VTH = VAB = 8 volts, with A positive w.r. to 
B, RTH = (60//40) + (50//50) = 49 ohms 

Hence, for maximum power, RL = 49 ohms 
With this RL, Current = 8/98 amp = 0.08163 amp 
Power to Load = i2 R = 0.3265 watt Fig. 2.238 

 

 
Solution. Let the conductance be represented by g. Let all the sources be current sources. For 

this, a voltage-source in series with a resistor is transformed into its equivalent current source. This 
is done in Fig. 2.239 (b). 

Fig. 2.239 (a) 
 

Fig. 2.239 (b).  All Current Sources 
 

Fig. 2.239 (c) 

Example 2.123. Find VA and VB by “nodal analysis” for the circuit shown in Fig. 2.239 (a). 
[Bombay University] 

L
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

Example. 2.124. Find the magnitude RL for the maximum power transfer in the circuit shown in 
Fig. 2.240 (a). Also find out the maximum power. 

Observing the circuit, g11 = (1/5) + 0.6 = 0.8, g22 = 0.40 + 0.2 = 0.6 
g12 = 0.2, Current sources : + 5 amp into ‘A’ + 5.67 amp into ‘B’ 

0.8 0.2  =  = 0.44 
  0.2 0.6

 =  
 5 0.2 

= 4.134 
1 5.67 0.6

 =  
  0.8 5 

= 5.526 
2 0.2    5.67

VA = 4.134/0.44 = 9.4 volts, 
VB = 5.536/0.44 = 12.6 volts. 

Current in 5-ohm resistor 

= (VB VA)/5 = 0.64 amp 
Check : Apply Thevenin’s Theorem : 

VA   =  10   (10/12) = 8.333 V 

VB =  (17/3)   2.5 = 14.167 V 

VTH = 14.167 8.333 = 5.834 V 
RTH = 4.167 

I5 = 5.834/(4.167 + 5) = 0.64 A 

 
 

Fig. 2.239 (d) Thevenized Circuit 

 

 
Fig. 2.239 (e) Right side simplified Fig. 2.239 (f ) Evaluating RTH 

 

 
Fig. 2.240 (a) 
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Solution. Simplify by source transformations, as done in Fig. 2.240 (b), (c), (d) 

Fig. 2.240 (b) 
 

Fig. 2.240 (c) Fig. 2.240 (d) 

For maximum power, RL = 7 + (10/7) = 8.43 
Maximum power = [(80/7)/16.68]2  8.43 = 3.87 watts. 

 

Tutorial Problems No. 2.6 

(a) Norton Theorem 

1. Find the Thevenin and Norton equivalent circuits for the active network shown in Fig. 2.241 (a). All 
resistance are in ohms. [Hint : Use Superposition principle to find contribution of each source] 

[10 V source, series resistor = 5  ; 2 A source, parallel resistance = 5 ] 

2. Obtain the Thevenin and Norton equivalent circuits for the circuit shown in Fig. 2.241 (b). All 
resistance values are in ohms. 

[15 V source, series resistance = 5  ; 3 A source, parallel resistance = 5 ] 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2.241 (a) Fig. 2.241 (b) Fig. 2.241 (c) 

3. Find the Norton equivalent circuit for the active linear network shown in Fig. 2.241 (c). All resis- 
tances are in ohms. Hint : It would be easier to first find Thevenin’s equivalent circuit]. 

[2 A source; parallel resistance = 16 ] 



 

 

4. Find Norton’s equivalent
equivalent circuit. 

5. State the Tellegen’s theorem
theorem on the types of

Solution. Tellegen’s Theorem can be stated as under :

For a network consisting of n 
ing Kirchhoff’s current law and v
then 

n 

k 1

where vk is the voltage across and i
Theorem, the sum of instantaneous powers for the 

This theorem has wide applications.
non-linear, passive or active, time

Explanation : This theorem will be explained with the help of the 
simple circuit shown in Fig. 2.242. The total resistance seen by the battery 
is = 8 + 4 || 4 = 10 

Battery current I = 100/10 = 10 A. This current divides equally at 
point B, 

Drop over 8  resistor = 8  

Drop over 4  resistor = 4  

Drop over 1  resistor = 1  

Drop over 3  resistor = 3  

According to Tellegen’s Theorem,

= 100  10 80  10 20  5 

(b) Millman’s Theorem 

6. Use Millman’s theorem, to find the potential of point 

7. Using Millman’s theorem,
are in ohms. 

  
 
 

 

 

Fig. 2.243 
(b) MPT Theorem 

8. In Fig. 2.245 what value of 
maximum total load power. 

9. Use superposition theorem

DC Network Theorems

equivalent circuit for the network shown in Fig. 2.249. Verify it through its
 [1 A, Parallel resistance = 6 

theorem and verify it by an illustration. Comment on the applicability
of networks. (Circuit and Field Theory, A.M.I.E. Sec. B,

Tellegen’s Theorem can be stated as under : 

n elements if i1, i2,. .... in  are the currents flowing through the elements
v1, v2         vn  are the voltages across these elements satisfying Kirchhoff’s

vkik = 0 
1 

ik is the current through the kth element. In other words, according
Theorem, the sum of instantaneous powers for the n branches in a network is always zero. 

applications. It is valid for any lumped network that contains any elements
or active, time-variant or time-invariant. 

This theorem will be explained with the help of the 
simple circuit shown in Fig. 2.242. The total resistance seen by the battery 

= 100/10 = 10 A. This current divides equally at 

 10 = 80 V 

 5 = 20 V 

 5 = 5 V 

 5 = 15 V 

Theorem, Fig. 2.242

5 – 5 × 5 15  5 = 0 

Use Millman’s theorem, to find the potential of point A with respect to the ground in Fig.
[

theorem, find the value of output voltage V0 in the circuit of Fig. 2.244. All
 

 

 Fig. 2.244 Fig. 2.245

In Fig. 2.245 what value of R will allow maximum power transfer to the load ? Also calculate the 
power. All resistances are in ohms. 

[4 

theorem to find currents in various branches of the ckt in Fig. 2.246.

(B.P.T.U., Orissa 2003) (Nagpur University, Summer 2002)
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its Thevenin’s 
[1 A, Parallel resistance = 6  ] 

applicability of Tellegen’s 
Circuit and Field Theory, A.M.I.E. Sec. B, 1993) 

flowing through the elements satisfy- 
are the voltages across these elements satisfying Kirchhoff’s law, 

according to Tellegen’s 

elements linear or 

Fig. 2.242 

with respect to the ground in Fig. 2.243. 
[VA  = 8.18 V] 
All resistances 

 [4 V] 

  
 

Fig. 2.245 

will allow maximum power transfer to the load ? Also calculate the 

[4  ; 48 W] 

2.246. 

(B.P.T.U., Orissa 2003) (Nagpur University, Summer 2002) 



172 Electrical Technology
 

 

10. Find the resistance between

Fig. 246 
11. Apply the superposition

in Fig. 2.248. 
12. Find the total current flowing through the circuit shown in Fig. 2.249 using

if the circuit is excited
(Ravishankar

 

Fig. 2.248
13. Compute the power dissipated

Theorem. The voltage 

14. Find the current in 11 
are in ohm. 

 
 
 

 
 

Fig. 2.250 
15. Calculate current-flowing through 

 
 
 

 
 
 

 

Technology 

between point A and B for the circuit shown in Fig. 2.247. 
(Nagpur University, Winter 2002)

 

 Fig. 247 
superposition theorem and find the current through 25 ohm resistance of the circuit

 (Mumbai University 2002)  (Nagpur University, Summer
Find the total current flowing through the circuit shown in Fig. 2.249 using stat-delta transformation 

excited by 39 volts and the value of each resistor connected in circuit
(Ravishankar University, Raipur 2003) (Nagpur University, Summer

 

2.248 Fig. 2.249 
dissipated in the 9 ohm resistor in the Fig. 2.250 by applying Superposition 

 and current sources should be treated as ideal. All resistances
(Mumbai University 2003) (Nagpur University, Winter

 ohm resistor in the Fig. 2.251 using star/delta conversion. All
 (Nagpur  University, Winter

  

 Fig. 2.251 
flowing through ‘‘2 ohms’’ resistor in Fig. 2.252 by using Superposition

(Mumbai University 2003) (Nagpur University, Summer

 
 

 

Fig. 2.252. All resistance are in ohms. 

(Nagpur University, Winter 2002) 

 

circuit shown 
Summer 2003) 
transformation 

circuit is 4 ohms. 
Summer 2003) 

 

Superposition 
resistances are in ohm. 

Winter 2003) 
All resistances 

(Nagpur  University, Winter 2003) 

ohms’’ resistor in Fig. 2.252 by using Superposition theorem. 
Summer 2004) 
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16. State and explain Superposition Theorem. 
(Pune University 2003) (Nagpur University, Summer 2004) 

17. A cast iron ring of 40 cm diameter is wound with a coil. The coil carries a current of 3 amp and 
produces a flux of 3 mwb in the air gap. The length of air gap is 2 mm. The relative permeability  
of the cast iron is 800. The leakage coefficient is 1.2. Calculate no. of turns of the coil. 

(Nagpur University, Summer 2004) 
18. Using superposition theorem, calculate the current IAB in the given circuit of Fig. 2.253. 

(Gujrat University, Summer  2003) 
19. Using delta-star transformation, determine the current drawn from the source in the given circuit 

Fig.2.254. (Gujrat  University,Summer 2003) 
 
 
 
 
 
 

Fig. 2.253 Fig. 2.254 
20. State and explain Kirchhoff's laws applied to electric circuit. 

(Gujrat University, Summer2003) 
21. State Kirchhoff's laws. (Madras  University, April 2002) 
22. Three resistances Rab, Rbc and Rca are connected in delta. Obtain expressions for their equivalent 

star resistances. (V.T.U.,  Belgaum Karnataka University, February   2002) 
23. In the circuit, shown in Fig. 2.255 determine the value of E so that the current I = 0. Use mesh 

method of analysis. (V.T.U.,  Belgaum Karnataka University, January/February  2004) 
24. In Fig. 2.256 derive the expressions to replace a delta connected resistances by an equivalent star 

connected resistances. Determine the resistance between a and b. All the resistance and 1 each. 
(V.T.U., Belgaum Karnataka University, January/February 2004) 

  

Fig. 2.255 
25. Determine the values of I and R in the circuit 

shown  in  the Fig. 2.257. (ESE 2003) 
26. In the circuit shown in the Fig. 2.258, S is closed 

at time t = 0. Determine ic(t) and the time constant. 
(Pune University 2003) (ESE 2003) 

27. In the circuit shown in the Fig. 2.259. S is closed 
at t = 0. Find the current ic(t) through the 
capacitor at t = 0. 

(Pune University 2003) (ESE 2003) 
 
 
 
 
 
 
 

 
Fig. 2.258 

Fig. 2.256 
 
 
 
 
 
 
 
 

Fig. 2.257 
 
 
 
 
 
 
 
 
 

Fig. 2.259 
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  OBJECTIVE TESTS – 2  

1. Kirchhoff’s current law is applicable to only 

(a) closed loops in a network 

(b) electronic circuits 

(c) junctions in a network 

(d) electric circuits. 

2. Kirchhoff’s voltage law is concerned with 

(a) IR drops 

(b) battery e.m.fs. 

(c) junction voltages 

(d) both (a) and (b) 

3. According to KVL, the algebraic sum of all 
IR drops and e.m.f.s in any closed loop of a 
network is always 

(a) zero 

(b) positive 

(c) negative 

(d) determined by battery e.m.fs. 

4. The algebraic sign of an IR drop is prima- 
rily dependent upon the 

(a) amount of current flowing through it 

(b) value of R 

(c) direction of current flow 

(d) battery connection. 

5. Maxwell’s loop current method of solving 
electrical networks 

(a) uses branch currents 

(b) utilizes Kirchhoff’s voltage law 

(c) is confined to single-loop circuits 

(d) is a network reduction method. 

6. Point out of the WRONG statement. In the 
node-voltage technique of solving networks, 
choice of a reference node does not 

(a) affect the operation of the circuit 

(b) change the voltage across any 
element 

(c) alter the p.d. between any pair of 
nodes 

(d) affect the voltages of various nodes. 

7. For the circuit shown in the given Fig. 2.260, 
when the voltage E is 10 V,  the current i  
is 1 A. If the applied woltage across terminal 
C-D is 100 V, the short circuit current 

flowing through the terminal A-B will be 
 

 
Fig. 2.260 

(a) 0.1 A (b) 1 A 
(c) 10 A (d) 100 A 

(ESE 2001) 
8. The component inductance due to the 

internal flux-linkage of a non-magnetic 
straight solid circular conductor per metre 
length, has a constant value, and is 
independent of the conductor-diameter, 
because 

(a) All the internal flux due to a current remains 
concentrated on the peripheral region of 
the conductor. 

(b) The internal magnetic flux-density along 
the radial distance from the centre of the 
conductor increases proportionately to the 
current enclosed 

(c) The entire current is assumed to flow along 
the conductor-axis and the internal flux is 
distributed uniformly and concentrically 

(d) The current in the conductor is assumed to 
be uniformly distributed throughout the 
conductor cross-section 

(ESE 2003) 
9. Two ac sources feed a common variable 

resistive load as shown n in Fig. 2.261. 
Under the maximum power transfer 
condition, the power absorbed by the load 
resistance RL is 

 

 
Fig. 2.261 

(a) 2200 W (b) 1250W 
(c) 1000 W (d)  625 W 

(GATE 2003) 
 

ANSWERS 

1. c 2. d 3. a 4. c 5. b 6. d 

 
 


