
 
 
 
 

 
 
 
 
 
 

 
Learning Objectives 

C H A P T E R 
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 Designing high speed magnetic 

levitation trains is one of the many 
applications of electromagnetism. 

Electromagnetism defines the 
relationship between magnetism and 

electricity 
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 Absolute and Relative Permeabilities of a Medium 

The phenomena of magnetism and electromagnetism are dependent upon a certain property of 
the medium called its permeability. Every medium is supposed to possess two permeabilities : 

(i) absolute permeability (μ) and (ii) relative permeability (μr). 
For measuring relative permeability, vacuum or free space is chosen as the reference medium. It 

is allotted an absolute permeability of μ0 = 4  10 henry/metre.  Obviously, relative permeability 7 

of vacuum with reference to itself is unity. Hence, for free space, 

absolute permeability μ0 = 4  107 H/m 
relative permeability μr = 1. 
Now, take any medium other than vacuum. If its relative permeability, as compared to vacuum is 

μr, then its absolute permeability is μ = μ0  μr H/m. 

 Laws of Magnetic Force 

Coulomb was the first to determine experimentally the quantitative expression for the magnetic 
force between two isolated point poles. It may be noted here that, in view of the fact that magnetic 
poles always exist in pairs, it is impossible, in practice, to get an isolated pole. The concept of an 
isolated pole is purely theoretical. However, poles of a thin but long magnet may be assumed to be 
point poles for all practical purposes (Fig. 6.1). By using a torsion balance, he found that the force 
between two magnetic poles placed in a medium is 

(i) directly proportional to their pole strengths 
(ii) inversely proportional to the square of the distance between them and 

(iii) inversely proportional to the absolute permeability of the surrounding medium. 

Fig. 6.1 Fig. 6.2 

For example, if m1 and m2 represent the magnetic strength of the two poles (its unit as yet being 
undefined), r the distance between them (Fig. 6.2) and  the absolute permeability of the surrounding 
medium, then the force F is given by 

  

F  
m1m2 

 
 

or F = k 
m1m2 

 
 

or 
 

= 
k m1m2 r^ 

 
 

in vector from 

µ r 2 
 

 

 r 2 F  r 2 

where  r^   is a unit vector to indicate direction of r. 
  

   m1  m2    
 or F = k 

r3 
r where F and r are vectors 

In the S.I. system of units, the value of the constant k is = 1/4. 
  

F  = 
m1m2 

4 r2 N or F = 
m1m2 

 

4  r 2 N – in a medium 
0 r 

 
In vector form, 

 
If, in the above equation, 

 

m = m = m (say) ; r = 1 metre ; F = 1 N 
4 0 


F = m1m2 

4 r3 

 m1m2 r = 
4 r 2 

N 
0 
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0 0

Then m2 = 1 or m = ± 1 weber* 

Hence, a unit magnetic pole may be defined as that pole which when placed in vacuum at a 
distance of one metre from a similar and equal pole repels it with a force of 1/4 0 newtons.** 

 Magnetic Field Strength (H) 

Magnetic field strength at any point within a magnetic field is numerically equally to the force 
experienced by a N-pole of one weber placed at that point. Hence, unit of H is N/Wb. 

Suppose, it is required to find the field intensity at a point A distant r metres from a pole of m 
webers. Imagine a similar pole of one weber placed at point A. The force experienced by this pole is 

F  =  
   m  1  

N  H = 
4 r 2 

  m 
N/Wb (or A/m)*** or oersted. 

4 r3 

Also, if a pole of m Wb is placed in a uniform field of 
strength H N/Wb, then force experienced by the pole is = mH 
newtons. 

It should be noted that field strength is a vector quantity 
having both magnitude and direction 

 





It would be helpful to remember that following terms are 
sometimes interchangeably used with field intensity : 
Magnetising force, strength of field, magnetic intensity and 
intensity of magnetic field. 

 

 Magnetic Potential 

The magnetic potential at any point within a mag- 
netic field is measured by the work done in shifting a 
N-pole of one weber from infinity to that point against 
the force of the magnetic field. It is given by 

 
 

...(Art. 4.13) 
It is a scalar quantity. 

 

 Flux per Unit Pole 

A unit N-pole is supposed to radiate out a flux of one weber. Its symbol is . Therefore, the flux 
coming out of a N-pole of m weber is given by 

  = m Wb  
 
 

* To commemorate the memory of German physicist Wilhelm Edward Weber (1804-1891). 

** A unit magnetic pole is also defined as that magnetic pole which when placed at a distance of one metre 
from a very long straight conductor carrying a current of one ampere experiences a force of 1/2 newtons 
(Art. 6.18). 

*** It should be noted that N/Wb is the same thing as ampere/metre (A/m) or just A/m cause ‘turn’ has no units 

M  =       m J/Wb 
40 r 


H =   m  

4  r 2 
r̂   =    m  r 

0 4 0 r 3 

Magnetic lines of force 



260 Electrical Technology 
 

µ = r 
 B  B (material) 

B0 B0(vacuum) 

i

0 r 

 Flux Density (B) 

It is given by the flux passing per unit area through a plane at right angles to the flux. It is usually 
designated by the capital letter B and is measured in weber/meter2. It is a Vector Quantity. 

It Wb is the total magnetic flux passing normally through an area of A m2, then 

B = /AWb/m2 or tesla (T) 

 

 Absolute Permeability () and Relative Permeability (rr) 

In Fig. 6.3 is shown a bar of a magnetic material, say, iron placed in a uniform field of strength H 
N/Wb. Suppose, a flux density of B Wb/m2 is developed in the rod. 

Fig. 6.3 

Then, the absolute permeability of the material of the rod is defined as 

   =  B/H henry/metre or B = H = µ  µ H Wb/m2 ...(i) 

When H is established in air (or vacuum), then corresponding flux density developed in air is 

   B0 = µ0 H  
Now, when iron rod is placed in the field, it gets magnetised by induction. If induced pole 

strength in the rod is m Wb, then a flux of m Wb emanates from its N-pole, re-enters its S-pole and 
continues from S to N-pole within the magnet. If A is the face or pole area of the magentised iron bar, 
the induction flux density in the rod is 

 B = m/A Wb/m2  
Hence, total flux density in the iron rod consists of two parts [Fig. 6.3 (b)]. 
(i) B0 –flux density in air even when rod is not present 

(ii) Bi –induction flux density in the rod 
B   =  B0 + Bi = µ0  H + m/A 

Eq. (i) above may be written as B = µr . µ0 H = µr B0 

 ...for same H 
 

Hence, relative permeability of a material is equal to the ratio of the flux density produced in 
that material to the flux density produced in vacuum by the same magnetising force. 

 

 Intensity of Magnetisation (I) 

It may be defined as the induced pole strength developed per unit area of the bar. Also, it is the 
magnetic moment developed per unit volume of the bar. 

Let m = pole strength induced in the bar in Wb 

4 r 2 A 
B =   1 Wb/m2 

Note. Let us find an expression for the flux density at a point distant r metres from a unit N-pole (i.e. a pole 
of strength 1 Wb.) Imagine a sphere of radius r metres drawn round the unit pole. The flux of 1 Wb radiated out 
by the unit pole falls normally on a surface of 4r2.m2. Hence 



 

Then 

Hence, it is seen that intensity
produced in it due to its own induced

If l is the magnetic length of the bar, then the product (




 Susceptibility (K) 

Susceptibility is defined as 

 

 Relation Between B, H, I and

It is obvious from the above discussion in Art. 6.7 that flux density 

Now absolute permeability is µ =  

Also 
For ferro-magnetic and para

it is negative. For ferro-magnetic substance (like iron, nickel, cobalt and alloys like nickel

cobalt-iron) r is much greater than

is slightly greater than unity. For diamagnetic materials (bismuth) µ

Solution. 

Now, absolute permeability µ= 

 Boundary Conditions

The case of boundary conditions between two materials of 
different permeabilities is similar to that discussed in Art. 4.19.

As before, the two boundary conditions are
(i) the normal component

boundary. 
(ii) the tangential component 

boundary H1t = H2t 

As proved in Art. 4.19, in a similar way, it can be shown

that 

This is called the law of magnetic flux refraction.

 Weber and Ewing’s Molecular
 
 
 

Fig. 6.5 

This theory was first advanced by 
developed by Ewing in 1890. The basic assumption of this theory is 
molecules
a N and S

Example 6.1. The magnetic susceptibility of oxygen gas at 20ºC is 167 
its absolute and relative permeabilities.

tan 1 

tan 2 
= 

1

2

Magnetism and Electromagnetism

r

A =  face or pole area of the bar in m2 

 I   =  m/A Wb/m2 

intensity of magnetisation of a substance may be defined as the flux
produced in it due to its own induced magnetism. 

is the magnetic length of the bar, then the product (m  l) is known as its magnetic moment 

Susceptibility is defined as the ratio of intensity of magnetisation I to the magnetising force H

 K = I/H henry/metre. 

Relation Between B, H, I and K 

It is obvious from the above discussion in Art. 6.7 that flux density B in a material is given by
B   =  B0  + m/A = B0  + I  B = 0 H + I 

Now absolute permeability is µ =  
 B   

0 H   I  
 µ    I  µ = µ + K 

H H 0 H 0 
 µ = µ0 µr  µ0 µr = µ0 + K or µr = 1 + K/µ0 

magnetic and para-magnetic substances, K is positive and for diamagnetic substances,
magnetic substance (like iron, nickel, cobalt and alloys like nickel

than unity whereas for para-magnetic substances (like aluminium),

is slightly greater than unity. For diamagnetic materials (bismuth) µr < 1. 

 r = 1  K  
0 

 1 167  1011 
 

4 107 
= 1.00133 

absolute permeability µ= µ0 µ = 4  107  1.00133 = 12.59  107 H/m 

Conditions 

The case of boundary conditions between two materials of 
different permeabilities is similar to that discussed in Art. 4.19. 

As before, the two boundary conditions are 
component of flux density is continuous across 

 B1n   =  B2n ...(i) 
tangential component of H is continuous across 

As proved in Art. 4.19, in a similar way, it can be shown 

This is called the law of magnetic flux refraction. 

and Ewing’s Molecular Theory 

 
 

Fig. 6.4 

This theory was first advanced by Weber in 1852 and was, later on, further 
developed by Ewing in 1890. The basic assumption of this theory is 
molecules of all substances are inherently magnets in themselves, each

S pole. In an unmagnetised state, it is supposed that these small

The magnetic susceptibility of oxygen gas at 20ºC is 167  1011 H/m. Calculate 
its absolute and relative permeabilities. 

1 

2 

I = 
m  

m  l  M 
= magnetic moment/volume 

A A  l V 
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flux density 

) is known as its magnetic moment M. 

the ratio of intensity of magnetisation I to the magnetising force H. 

in a material is given by 

is positive and for diamagnetic substances, 
magnetic substance (like iron, nickel, cobalt and alloys like nickel-iron and 

aluminium), µr 

 

 

in 1852 and was, later on, further 
developed by Ewing in 1890. The basic assumption of this theory is that 

each having 
small molecular 

H/m. Calculate 
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magnets lie in all sorts of haphazard manner forming 
more or less closed loops (Fig. 6.5). According to the 
laws of attraction and repulsion, these closed magnetic 
circuits are satisfied internally, hence there is no resultant 
external magnetism exhibited by the iron bar. But when 
such an iron bar is placed in a magnetic field or under the influence of 
a magnetising force, then these molecular magnets start turning round 
their axes and orientate themselves more or less along straight lines 

 
 
 
 

Fig. 6.6 

parallel to the direction of the magnetising force. This linear 
arrangement of the molecular magnets results in N polarity at one end 
of the bar and S polarity at the other (Fig. 6.6). As the small magnets 
turn more nearly in the direction of the magnetising force, it requires 
more and more of this force to produce a given turning moment, thus 
accounting for the magnetic saturation. On this theory, the hysteresis 
loss is supposed to be due to molecular friction of these turning 
magnets. 

Because of the limited knowledge of molecular structure available 
at the time of Weber, it was not 
possible to explain firstly, as to 
why the molecules themselves are 
magnets and secondly, why it is 
impossible  to  magnetise certain 
substances like wood etc. The first objection was explained by 
Ampere who maintained that orbital movement of the electrons 
round the atom of a molecule constituted a flow of current which, 
due to its associated magnetic effect, made the molecule a magnet. 
Later on, it became difficult to explain the phenomenon of 
diamagnetism (shown by materials like water, quartz, silver and 
copper etc.) erratic behaviour of ferromagnetic (intensely 
magnetisable) substances like iron, steel, cobalt, nickel and some 
of their alloys etc. and the paramagnetic (weakly magnetisable) 

substances like oxygen and aluminium etc. Moreover, it was asked : if molecules of all substances are 
magnets, then why does not wood or air etc. become magnetised ? 

All this has been explained satisfactorily by the atom-domain theory which has superseded the 
molecular theory. It is beyond the scope of this book to go into the details of this theory. The 
interested reader is advised to refer to some standard book on magnetism. However, it may just be 
mentioned that this theory takes into account not only the planetary motion of an electron but its 
rotation about its own axis as well. This latter rotation is called ‘electron spin’. The gyroscopic 
behaviour of an electron gives rise to a magnetic moment which may be either positive or negative. A 
substance is ferromagnetic or diamagnetic accordingly as there is an excess of unbalanced positive 
spins or negative spins. Substances like wood or air are non-magnetisable because in their case, the 
positive and negative electron spins are equal, hence they cancel each other out. 

 Curie Point 

As a magnetic material is heated, its molecules vibrate 
more violently. As a consequence, individual molecular 
magnets get out of alignment as the temperature is increased, 
thereby reducing the magnetic strength of the magnetised 
substance. Fig. 6.7 shows the approximate decrease of mag- 
netic strength with rise in temperature. Obviously, it is pos- 
sible to partially or even completely destroy the magnetic 
properties of a material by heating. The temperature at which 
the vibrations of the molecular magnets become so random Fig. 6.7 

 
 
 
 
 
 
 
 
 
 
 

An iron nail converts into a magnet 
as soon as the external magnetizing 

force starts acting on it 

 
 
 
 
 
 
 
 
 
 
 

 
Molecular magnets which are 
randomly arranged in the 
unmagnetised state, get ori- 
ented under the influence of an 
external magnetizing force 
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0 r  

and out of alignment as to reduce the magnetic strength to zero is called Curie point. More accu- 
rately, it is that critical temperature above which ferromagnetic material becomes paramagnetic. 

ELECTROMAGNETISM 

6.14 . Force on a Current-carrying Conductor Lying in a Magnetic Field 

It is found that whenever a current-carrying conductor is placed in magnetic field, it experiences 
a force which acts in a direction perpendicular both to the direction of the current and the field. In 
Fig. 6.8 is shown a conductor XY lying at right angles to the uniform horizontal field of flux density B 
Wb/m2 produced by two solenoids A and B. If l is the length of the conductor lying within this field 
and I ampere the current carried by it, then the magnitude of the force experienced by it is 

F = BIl = µ µ HIl newton  
Using vector notation F 

is 90º in the present case 
= I l  B and F = IlB sin  where  is the angle between l and B which 

or F   =  Il B sin 90º = Il B newtons (∵  sin 90º = 1) 
The direction of this force may be easily found by Fleming’s left-hand rule. 

 

Fig. 6.8 Fig. 6.9 

Hold out your left hand with forefinger, second finger and thumb at right angles to one another. 
If the forefinger represents the direction of the field and 
the second finger that of the current, then thumb gives the 
direction of the motion. It is illustrated in Fig. 6.9. 

Fig. 6.10 shows another method of finding the direc- 
tion of force acting on a current carrying conductor. It is 
known as Flat Left Hand rule. The force acts in the direc- 
tion of the thumb obviously, the direction of motor of the 
conductor is the same as that of the force. 

It should be noted that no force is exerted on a con- 
ductor when it lies parallel to the magnetic field. In gen- 
eral, if the conductor lies at an angle  with the direction 
of the field, then B can be resolved into two components, 
B cos  parallel to and B sin  perpendicular to the con- 
ductor. The former produces no effect whereas the latter is 
responsible for the motion observed. In that case, 

F = BIl sin  newton, which has been expressed as 
cross product of vector above.* 

Fig. 6.10 
 

 
* It is simpler to find direction of Force (Motion) through cross product of given vectors I  l    and  B . 


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H . d s Joules = Amperes = 

 Ampere’s Work Law 

The law states that m.m.f.
sponding to e.m.f. i.e. electromotive
a  closed path is  equal to  the    

Mathematically,  H . d s = I 

representing magnetic field strength in dot product with

d 

s  of the enclosing path S around current

why line integral (“) of dot product
Work law is very comprehensive and is applicable to all magnetic fields whatever the shape of 

enclosing path e.g. (a) and (b) in Fig. 6.11. Since path 
around it is zero. 

The above work Law is used
idealized circuits like (i) a long

(i) Magnetomotive Force around a Long Straight

In Fig. 6.12 is shown a 
which is assumed to extend to infinity in either 
direction. Let it carry a current 
upwards. The magnetic field consists of circular 
lines of force having their plane perpendicular to 
the conductor and their centres at the centre of
conductor. 

Suppose that the field strength
distant r metres from the centre
H. Then, it means that if a unit 
C, it will experience a force of 
direction of this force would be tangential to the 
circular line of force passing through 
unit N-pole is moved once round the conductor 
against this force, then work done 

m.m.f. = force  distance = 

i.e. I = H  2 r joules = Amperes
 

or H = I  
2 r 

 
 

 
 

Obviously, if there are N conductors (as shown in Fig. 6.13), then
 
 
 

 
 
 

Fig. 6.13 

** M.M.F. is not a force, but is the work done.

=

Technology 

H . d s  

Joules = Amperes = I 

Law or Ampere’s Circuital Law 

m.m.f.* (magnetomotive force corre- 
electromotive force of electric field) around 

to  the  current enclosed  by  the  path. 
 

I amperes where H is the vector 

representing magnetic field strength in dot product with vector 

around current I ampere and that is 

 

Fig. 6.11 

of dot product 

 
 

 
 

is taken. 
law is very comprehensive and is applicable to all magnetic fields whatever the shape of 

) in Fig. 6.11. Since path c does not enclose the conductor, the m.m.f. 

used for obtaining the value of the magnetomotive force around
long straight current-carrying conductor and (ii) a long solenoid.

Magnetomotive Force around a Long Straight Conductor 

a straight conductor 
which is assumed to extend to infinity in either 

current of I amperes 
magnetic field consists of circular 

lines of force having their plane perpendicular to 
the conductor and their centres at the centre of the 

strength at point C 
centre of the conductor is 

. Then, it means that if a unit N-pole is placed at 
, it will experience a force of H newtons. The 

direction of this force would be tangential to the 
circular line of force passing through C. If this 

pole is moved once round the conductor 
his force, then work done i.e. 

distance = I 

joules = Amperes 

Fig. 6.12 

conductors (as shown in Fig. 6.13), then 

and 

M.M.F. is not a force, but is the work done. 

H = NI A/m or Oersted 
2 r 

B = µ NI Wb/m2 tesla 
0 2 r 

= 
0 r NI 

Wb/m2 tesla 
2 r 

...in a medium

 
 
 
 
 
 
 
 
 
 

 
  

law is very comprehensive and is applicable to all magnetic fields whatever the shape of 
does not enclose the conductor, the m.m.f. 

around simple 
solenoid. 

...in air 

...in a medium 
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dB = 
0 Idl 

sin  Wb/m2 
0 



dB0 = 
0 I dl  r^ 

4 r 2 

4 r 2 
 

in vector form 

^ 2 

dl  

(ii) Magnetic Field Strength of a Long Solenoid 

Let the Magnetic Field Strength along the axis of the sole- 
noid be H. Let us assume that 

(i) the value of H remains constant throughout the length l 
of the solenoid and 

(ii) the volume of H outside the solenoid is negligible. 

Suppose, a unit N-pole is placed at point A outside the sole- 
noid and is taken once round the completed path (shown dotted 
in Fig. 6.14) in a direction opposite to that of H. Remembering 
that the force of H newtons acts on the N-pole only 
over the length l (it being negligible elsewhere), the 
work done in one round is 

= H  l joules = Amperes 

The ‘ampere-turns’ linked with this path are NI 
where N is the number of turns of the solenoid and I 
the current in amperes passing through it. Accord- 
ing to Work Law 

H   l = NI or H = NI A/m or Oersted 
l 

Also  B = 
0 NI 

Wb/m2 or tesla ...in air 
l 

= 
0 r NI 

Wb/m2 or tesla ...in a medium 
l 

 Biot-Savart Law* 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.14 

The expression for the magnetic field strength dH produced at point P by a vanishingly small 
length dl of a conductor carrying a current of I amperes (Fig. 6.15) is given by 

 

dH  = 
 


or dH   = 

Idl sin  
A/m 

4 r 2 
 


(Id l  r) / 4 r in vector form 

 


The direction of dH 

  

is perpendicular to the plane 
 
 
 
 
 

 
Fig. 6.15 

containing both ‘ 

or 

 

and 

 ’ and  

r i.e. entering. 

 

 Applications of Biot-Savart Law 

(i) Magnetic Field Strength Due to a Finite Length of Wire Carrying Current 
Consider a straight wire of length l carrying a steady current I. We wish to find magnetic field 

strength (H) at a point P which is at a distance r from the wire as shown in Fig. 6.16. 
 

* After the French mathematician and physicist Jean Baptiste Biot (1774-1862) and Felix Savart 
(1791-1841) a well-known French physicist. 

 
 
 
 
 
 
 
 

Magnetic field around a coil 
carrying electric current 
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
H =    Ir  r 

4 r3 

0 

= I sin  u^ 
4 r 

   I  

The magnetic field strength 

 

or 

or 

The magnetic field strength due to entire length 

 




 Fig. 6.16 



To evaluate the integral most simply, make the following substitution

 l = r tan  dl = r sec2

i.e. become 0 to . 
 
 
 
 
 

N.B. For wire of infinite length extending it at both ends 

  to  


, giving H  2
2 2 4 r 

(ii) Magnetic Field Strength along the Axis of
Square Coil 

This is similar to (i) above
conductors each of length say, 
current of I amperes as shown in Fig. 6.17. The Mag
netic Field Strengths at the axial point 
posite sides ab and cd are Hab 
angles to the planes containing 
respectively. Now, Hab and H cd 

Technology 

r sec 2 
Ir 2 

sec2 
d û 

4 r3 
cos d û   1 sin 

4 r 0 
û 

0 



4 

u 

H  u 

s 

  ̂




The magnetic field strength dH due to a small element dl of the wire shown is 

 
     

^
 

dH 


 dH 

= I d l  s 

4 s2 

=   
Idl sin  

u^ 

4 s2 

(By Biot-Savart Law) 

 
(where u^           is unit vector perpendicular


plane containing  dl  and  s^   and into the

 
 Idl cos  ^ 
dH = u 

4 s2 
...[∵   and  are complementary angles]

The magnetic field strength due to entire length l :  
 I   l  cos  dl 

H =  
4 


 0 

 

 u^ 
s2 

I  
 l 

r / s 

 

 
  


dl  u^ 

 cos  = r in


   2 s 
 0 

 Ir 
 l 

dl 
  Ir 

 l
  dl 


=   u^ 


 2 2 3/ 2 

4  s  4  (r    l ) 
 0   0 


(∵  r is constant) ; s = 

 l 




= Ir 
  dl  u^ (Taking r3 out from denominator)

4 r3 [1  (r / l)2]3 / 2 
 0 

To evaluate the integral most simply, make the following substitution 
l 

= tan in Fig. 6.16 
r 

2  d and 1 + (r/l )2 = 1 + tan2  = sec2  and limits get transformed

For wire of infinite length extending it at both ends i.e. to + the limits of integration would be

2 û  or 


 I ^ . 
 2 r 

Magnetic Field Strength along the Axis of a 

above except that there are four 
 2a metres and carrying a 

amperes as shown in Fig. 6.17. The Mag- 
netic Field Strengths at the axial point P due to the op- 

ab and Hcd directed at right 
angles to the planes containing P and ab and P and cd 

cd are numerically equal, 

 
 
 
 
 
 
 
 
 

Fig. 6.17 

3

=

r2  l 2 

is unit vector perpendicular to 

and into the plane.) 

are complementary angles] 

n Fig. 6.16

in Fig. 6.16 
denominator) 

and limits get transformed 

the limits of integration would be 



 

hence their components at right
will add together. Similarly, the
only. 

As seen from Eq. (ii) above,

 
Now 

Its axial components is 

All the four sides of the rectangular
field at P. Hence, resultant magnetising force at 

Now cos
 

 
 

In case, value of H is required
sion, 

we get 
 

(iii) Magnetising Force on the Axis of a Circular

In Fig. 6.19 is shown a circular one
amperes. The magnetising force
Law is 

The direction of dH is at right angles to the line 
ing point P to the element ‘dl’. 
two components : 

(a) the axial component dH

(b) the vertical component 

Now, the vertical component
ponent of dH due to element ‘dl
of dl’s taken around the coil. Hence,
all the axial components. 

dH

 a 2 

2 I 
AT/m

4a 
H = 4  1 . 2 

Resultant magnetising force due to all sides is
/4  

sin  . d  I = 
4 a 

/4  

Note. The last result can be found
side is, as given by Eq. (i) 

Magnetism and Electromagnetism

H = 2a2 . I 

 a2 . 2 . a 
 2 . I AT/m 

 a 

a2  x2 

a2  x2 

(2a2  x2) a2  x2 

right angles to the axis of the coil will cancel out, but the axial components 
the other two sides da and bc will also give a resultant axial

above, 

H = I [cos   cos (180º  )] = I .2 cos   I cos 
ab 

 r = 

4 r  
 Hab = 

4 r 
    I . cos   

2

2

 Hab = Hab . sin  =  
     I cos  

. sin 
2

rectangular coil will contribute an equal amount to the resultant
. Hence, resultant magnetising force at P is 

H   =   4  
     I cos  

. sin  , 
2

cos   =  a and sin  =
  a 

 

 H = 2a2 . I 
 

AT/m. 

required at the centre O of the coil, then putting x = 0 in the above

Magnetising Force on the Axis of a Circular Coil 

In Fig. 6.19 is shown a circular one-turn coil carrying a current of I 
Fig. 6.18

force at the axial point P due to a small element ‘dl’ as given by

 
is at right angles to the line AP join- 

’. Now, dH can be resolved into 

dH  = dH sin 
the vertical component dH = dH cos 






Fig. 6.19 

component dH cos  will be cancelled by an equal and opposite vertical
dl’ at point B. The same applies to all other diametrically opposite
Hence, the resultant magnetising force at P will be equal to


dH = 

  Idl  

4 (r2  x2) 

...as found above AT/m 

Resultant magnetising force due to all sides is 

 a 2 4 
. 2cos 45º  . 

 a 4 45º  a 4 
I 2 I 45º I   cos  

found directly as under. As seen from Fig. 6.18, the field at point 

a2  x2 
a2  x2 

 (a2  x2) . x2  2a2 
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components 
axial component 

cos 
 r 

resultant magnetic 

above expres- 

 
Fig. 6.18 

by Laplace’s 

vertical com- 
opposite pairs 
to the sum of 

 O due to any 
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 H =  dH   


=
  I . r

4 (r 2  
 

 I 
 

= 
2 r 

. 
(r 2  

or 
 

In case the value of H is required
the above expression, we get 

 

H   =    I    – for
2 r 

  Note.  The magnetising force 

With reference to the coil shown
the

 
Fig. 6.20 

(iv) Magnetising Force on the Axis of

Let a short solenoid having
and radius of turns r be uniformly
N turns each carrying a current
in Fig. 6.21. The winding density 
ber of turns per unit length of the
N/l. Hence, in a small element of length 
there will be N.dx/l turns. Obviously, a
short element of length of the solenoid 
be regarded as a concentrated coil of 
short axial length and having N.dx
dH be the magnetising force contributed
the element dx at any axial point 

Now dx . sin 

Substituting this value of 

Total value of the magnetising
integrating the above expression between proper

 

* Because l sin  = r l = r/sin 

H = NI sin3  AT/m
2 r 

Technology 

 

  I . dl . r   sin 

 dH sin   dl   
4 (r 2   x2)3/ 2  dl  

r 2r 
dl  

    I . r . 2 r  Ir 2 
 

 x2)3/ 2 0 

 r3 
 

4(r 2  x2)3/ 2 2 (r 2  x2)3/ 2 
 

I sin3 




 x2)3/ 2   H = 
2r 

AT/m  

required at the centre O of the coil, then putting  = 90° and 

for single-turn coil or   H =  NI 
 2 r 

–for N-turn coil 

The magnetising force H at the centre of a circular coil can be directly found as follows

shown in the Fig. 6.20, the magnetising force dH produced
the small element dl (as given by Laplace’s law) is 

 

dH = I . dl sin   I .dl  

4 r 2 4 r 2 (∵  sin  = sin 90º = 1)

  dH = 
 

 

 I . dl  I dl
 or H = 

 
 

I 



4 r2 4 r 2 4

Magnetising Force on the Axis of a Short Solenoid 

having a length of l 
uniformly wound with 
current of I as shown 

in Fig. 6.21. The winding density i.e. num- 
the solenoid is 

. Hence, in a small element of length dx, 
turns. Obviously, a very 

short element of length of the solenoid can 
be regarded as a concentrated coil of very 

N.dx/l turns. Let 
be the magnetising force contributed by 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.21 

at any axial point P. Then, substituting dH for H and N.dx/l for N in Eq. 
 

dH = 
N . dx 

. I . sin3 
l 2 r 

. sin  = r . d/sin *  dx = r . d/sin2 
Substituting this value of dx in the above equation, we get 

dH = 

 

NI sin  . d 
2 l 

magnetising force at P due to the whole length of the solenoid may be
integrating the above expression between proper limits. 

. Now, M/N = l.d = r d/sin . Also, MN = dx, sin , hence dx =

H = I AT/m –for 1-turn coil ; NI AT/m –for N-turn coil.
2r 2r 

AT/m –for an N-turn coil 

r 2  x2  

  r 
 

...(iii) 

 sin  = 1 in 

at the centre of a circular coil can be directly found as follows :  

produced at O due to 

= sin 90º = 1) 

I . 2 r  I  

4 r2 2 r 

in Eq. (iii), we get 

be found by 

= r d/sin2 . 

turn coil. 



 

Example 6.2. Calculate the magnetising force and flux density at a distance of 5 cm from a
long straight circular conductor
ing the variation of B from the conductor 

Example 6.3. A wire 2.5 m long is bent (i) into a square and (ii) into a circle. If the current 
flowing through the wire is 100 A, find the 
centre of the circle. 

 



The above expression may
outside the solenoid. 

(i) At mid-point, 2 = (
 

Obviously, when the solenoid is very long, cos 

(ii) At any point on the axis
2   so that cos 1  1 and cos 

 
 

It proves that inside a very long solenoid, 
those lying too close to either end of the solenoid.

(iii) Towards either end of
so that cos 1 = 0 and cos 2 = 

 
 

In other words, value of H 

Solution. As seen from Art. 6.15 
 

H  =     I   

2 r 

B = µ0 
 

H = 4

In general, B = 0 I 
2 r 

Now, at the conductor surface, 
 

 B = 
4 107

2 10

The variation of B outside the conductor is shown in Fig. 6.22.

Solution. (i) Each side of the square is 2

Value of H at the centre of the square is [Art 6.17 

Value of H at the centre is

Magnetism and Electromagnetism

H  NI  2 = NI 
2 l l 

H = NI AT/m 
l 

H = NI 
2 l 

Calculate the magnetising force and flux density at a distance of 5 cm from a
conductor carrying a current of 250 A and placed in air. Draw a curve

ing the variation of B from the conductor surface outwards if its diameter is 2 mm. 

A wire 2.5 m long is bent (i) into a square and (ii) into a circle. If the current 
flowing through the wire is 100 A, find the magnetising force at the centre of the square and the 

 (Elec. Measurements; Nagpur Univ.

 H = NI 2 
sin  . d  NI  cos  2

 
 

  2 l  


2l 1 

=   NI 
2 l 

(cos 1 cos 2) 

may be used to find the value of H at any point of the axis, either

  1), hence cos 2 = cos 1 

 H = 2NI cos 1 = NI cos 1 

2 l l 
Obviously, when the solenoid is very long, cos 1 becomes nearly unity. In that case,

–Art. 6.15 

axis inside a very long solenoid but not too close to either end,
1 and cos 2 = 1. Then, putting these values in Eq. (iv) above, we have

It proves that inside a very long solenoid, H is practically constant at all axial points excepts 
those lying too close to either end of the solenoid. 

of the solenoid, H decreases and exactly at the ends, 1 = /2 
= 1. Hence, from Eq. (iv) above, we get 

H is decreased to half the normal value well inside the solenoid.

As seen from Art. 6.15 (i), 
 250  795.6 AT/m 

 2  0.05 

= 4  107  795.6 = 103 Wb/m2 

Now, at the conductor surface, r = 1 mm = 103 m 
7  250 

 

103 
= 0.05 Wb/m2 

 
 

Fig. 6.22 

outside the conductor is shown in Fig. 6.22. 

Each side of the square is 2a = 2.5/4 = 0.625 m 

the centre of the square is [Art 6.17 (ii)] 

=
 2 I  2 100 

= 144 AT/m (ii) 2r = 2.5 ; r = 0.398 m
 a   0.3125 

is = I/2r = 100/2  0.398 = 125.6 AT/m 

1
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Calculate the magnetising force and flux density at a distance of 5 cm from a 
curve show- 

A wire 2.5 m long is bent (i) into a square and (ii) into a circle. If the current 
magnetising force at the centre of the square and the 

(Elec. Measurements; Nagpur Univ. 1992) 

 ...(iv) 

either inside or 

becomes nearly unity. In that case, 

Art. 6.15 (ii) 

end, 1  0 and 
) above, we have 

at all axial points excepts 

 and 2  , 

is decreased to half the normal value well inside the solenoid. 

= 0.398 m 
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r2  x2 

 

 
Solution. By the force on a unit magnetic pole is meant the magnetising force H. 
For a straight conductor [Art 6.15 (i)] H = I/2  r = 15/2  0.15 = 50/ AT/m 
Now, the magnetising force at the centre of a loop of wire is [Art. 6.17 (iii)] 

= I/ 2r = I/D = 15/D AT/m 
Since the two magnetising forces are equal 
 50/ = 15/D; D = 15 /50 = 0.9426 m = 94.26 cm. 

 
Solution. As seen from Art 6.17 (iii), H = I  

2r 
. sin3  AT/m 

Here sin  = 
  r  25  0.2425 

252  1002 

 
sin3 

 
 = (0.2425)3 

 
= 0.01426  H = 

28 104 
 

2 25 

 
0.01426 

 
76.8 AT/m 

 Force Between Two Parallel Conductors 

(i) Currents in the same direction. In Fig. 
6.23 are shown two parallel conductors P and Q 
carrying currents I1 and I2 amperes in the same 
direction i.e. upwards. The field strength in the 
space between the two conductors is decreased due 
to the two fields there being in opposition to each 
other. Hence, the resultant field is as shown in the 
figure. Obviously, the two conductors are 
attracted towards each other. 

(ii) Currents in opposite directions. If, as 
shown in Fig. 6.24, the parallel conductors carry 
currents in opposite directions, then field strength 
is increased in the space between the two conduc- 
tors due to the two fields being in the same direc- 
tion there. Because of the lateral repulsion of the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.23 

lines of the force, the two conductors experience a mutual force of repulsion as shown separately in 
Fig. 6.24 (b). 

 Magnitude of Mutual Force 

It is obvious that each of the two parallel conductors lies in the magnetic field of the other 
conductor. For example, conductor P lies in the magnetic field of Q and Q lies in the field of P. If ‘d’ 
metres is the distance between them, then flux density at Q due to P is [Art. 6.15 (i)] 

Example. 6.5. A single-turn circular coil of 50 m. diameter carries a direct current of 28  104 
A. Assuming Laplace’s expression for the magnetising force due to a current element, determine the 
magnetising force at a point on the axis of the coil and 100 m. from the coil. The relative permeabil- 
ity of the space surrounding the coil is unity. 

Example 6.4. A current of 15 A is passing along a straight wire. Calculate the force on a unit 
magnetic pole placed 0.15 metre from the wire. If the wire is bent to form into a loop, calculate the 
diameter of the loop so as to produce the same force at the centre of the coil upon a unit magnetic 
pole when carrying a current of 15 A. (Elect. Engg. Calcutta Univ.) 

2 
B = 2 d Wb/m 

0 I1 
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1 2 

I2 in the same direction. The magnetic intensity at a point midway between the wires is 7.95 AT/m. If 
Example 6.7. Two long straight parallel wires, standing in air 2 m apart, carry currents I1 and 

the force on each wire per unit length is 2.4  104 N, evaluate I and I . 1 2 

If l is the length of conductor Q lying in this 
flux density, then force (either of attraction or 
repulsion) as given in Art. 6.14 is 

 
 

Obviously, conductor P will experience an 
equal force in the opposite direction. 

The above facts are known as Laws of Paral- 
lel Currents and may be stated as follows : 

(i) Two parallel conductors attract each other 
if currents through them flow in the same 
direction and repel each other if the cur- 
rents through them flow in the opposite 
directions. 

(ii) The force between two such parallel con- 
ductors is proportional to the product of 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.24 

current strengths and to the length of the conductors considered and varies inversely as the 
distance between them. 

 

 Definition of Ampere 

If has been proved in Art. 6.19 above that the force between two infinitely long parallel cur- 
rently-carrying conductors is given by the expression 

F = 
0 I1 I2 l 

 
N or F = 4 107 I I l 

 
 

 2  10 7 I1 I2 N 
2 d 

The force per metre run of the conductors is 

2 d d 

 

 If I1 = I2 = 1 ampere (say) and d = 1 metre, then F = 2  10 N 7 

Hence, we can define one ampere current as that current which when flowing in each of the two 
infinitely long parallel conductors situated in vacuum and separated 1 metre between centres, 
produces on each conductor a force of 2  107 N per metre length. 

Example 6.6. Two infinite parallel conductors carry parallel currents of 10 amp. each. Find 
the magnitude and direction of the force between the conductors per metre length if the distance 
between them is 20 cm. (Elect. Engg. Material - II Punjab Univ. May 1990) 

Solution. F = 2  107 10  10  1 N = 104 N 
0.2 

The direction of force will depend on whether the two currents are flowing in the same direction 
or in the opposite direction. As per Art. 6.19, it would be a force of attraction in the first case and that 
or repulsion in the second case. 

Solution. As seen from Art. 6.17, the magnetic intensity of a long straight current-carrying 
conductor is 

H  =  I   AT/m  
2 r 

F = 2  107 
I1 I2 N/m 

d 

F = BI l newton 2 or F = 
0I1I2l   

2 d 
N 
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1. The force between two long parallel conductors is 15 kg/metre. The conductor spacing is 10 cm. If 
one conductor carries twice the current of the other, calculate the current in each

2. A wire is bent into a plane
Calculate the field strength set up at the centre of

Also, it is seen from Fig. 6.23 that when the two currents flow in the same direction, net field 
strength midway between the two 

Now, H1 = I1/2 and H2 = I

 
I1 

2


Force per unit length of the conductors is 
 2.4   

Substituting the value of I

(50 + I
or (I2  + 80) (I2  

 Magnetic Circuit 

It may be defined as the route or path which is followed by magnetic flux. The law of magnetic 
circuit are quite similar to (but not the same as) those

Consider a solenoid or a toroidal iron ring having a magnetic path of 
section A m2 and a coil of N turns carrying 

Then, as seen from Art. 6.15, field 

H   =    NI

l 
Now B = µ µ 

0  

Total flux produce = B 



The numerator ‘Nl’ which
circuit is known as magnetomotive force (m.m.f.). Obviously, its unit is ampere
analogous to e.m.f. in an electric circuit.

 

The denominator  l is
0 r A 

electric circuits. 
 

 flux =
reluctance

Sometimes, the above equation
a similar expression in electric circuits

 

* Strictly speaking, it should be only ‘ampere’ because turns have no unit.

 =   
l / 

Technology 

1 2 

2 2

Tutorial Problems No. 6.1 
The force between two long parallel conductors is 15 kg/metre. The conductor spacing is 10 cm. If 
one conductor carries twice the current of the other, calculate the current in each conductor.

[6,060 A; 12,120 A]
plane to form a square of 30 cm side and a current of 100 A is passed

Calculate the field strength set up at the centre of the square. [300

(Electrotechnics - I, M.S. Univ. 

Also, it is seen from Fig. 6.23 that when the two currents flow in the same direction, net field 
strength midway between the two conductors is the difference of the two field strengths.

= I2/2 because r = 2/1 = 2 metre 

 
I2 

2 =  7.95  I1  I2 = 50 

Force per unit length of the conductors is F = 2  107 I I /d newton 
  104   =  2   107  I  I /2  I I = 2400 

1 2 1 2 

I1 from (i) in (ii), we get 
2 

(50 + I2)I2    =  2400    or   I + 50I   2400 = 0 
30)   =  0      I2  = 30 A   and I1 = 50 + 30 = 80 A 

MAGNETIC CIRCUIT 

It may be defined as the route or path which is followed by magnetic flux. The law of magnetic 
circuit are quite similar to (but not the same as) those of the electric circuit. 

Consider a solenoid or a toroidal iron ring having a magnetic path of l metre, area of cross 
turns carrying I amperes wound anywhere on it as in Fig. 6.25.

Then, as seen from Art. 6.15, field strength inside the solenoid is 
NI AT/m 

 
 

= µ µ H = 
0 r NI 

Wb/m2 
 

0   r l 

 A = 
0 r A NI 

Wb 
l 

which produces magnetization in the magnetic 

 

 
Fig. 6.25

known as magnetomotive force (m.m.f.). Obviously, its unit is ampere-turn (AT)
analogous to e.m.f. in an electric circuit. 

is called the reluctance of the circuit and is analogous to resistance
 

= m.m.f.  
reluctance 

 
 

or   =  F 
S 

equation is called the “Ohm’s Law of Magnetic Circuit” because it
a similar expression in electric circuits i.e. 

Strictly speaking, it should be only ‘ampere’ because turns have no unit. 

 NI Wb 
/ 0 r A 

The force between two long parallel conductors is 15 kg/metre. The conductor spacing is 10 cm. If 
conductor. 

[6,060 A; 12,120 A] 
passed through it. 

[300 AT/m] 

Univ. Baroda ) 

Also, it is seen from Fig. 6.23 that when the two currents flow in the same direction, net field 
conductors is the difference of the two field strengths. 

 ...(i) 

 ...(ii) 

It may be defined as the route or path which is followed by magnetic flux. The law of magnetic 

metre, area of cross 
amperes wound anywhere on it as in Fig. 6.25. 

Fig. 6.25 

turn (AT)*. It is 

resistance in 

it resembles 



 

current  =      

resistance

 Definitions Concerning Magnetic

1. Magnetomotive force (m.m.f.). 
and corresponds to electromotive force (e.m.f.) in an electric

M.M.F. is equal to the work done in joules in carrying a unit magnetic pole once through the 
entire magnetic circuit. It is measured in ampere

In fact, as p.d. between any two points is measured by the work done in carrying a unit charge 
from one points to another, similarly, m.m.f. between two points is measured by the work done in 
joules in carrying a unit magnetic pole from one point to another.

2. Ampere-turns (AT). 
product of number of turns of a

3. Reluctance. It is the name
magnetic flux in it. It, in fact, measures the opposition offered to the passage of magnetic flux 
through a material and is analogous to resistance in an electric circuit even in form. Its units is
AT/Wb.* 

reluctance =

In other words, the reluctance of a magnetic circuit is the number of 
weber of magnetic flux in the circuit.
henry.” 

4. Permeance. It is reciprocal of reluctance and implies the case or readiness with which 
magnetic flux is developed. It is
of Wb/AT or henry. 

5. Reluctivity. It is specific reluctance and corresponds to resistivity which is ‘specific 
resistance’. 

 

 Composite Series Magnetic

In Fig. 6.26 is shown a composite
materials of different permeabilities
reluctance. The total reluctance is the sum of individual reluctances as they are joined in











 How to Find Ampere

It has been shown in Art. 6.15
 ampere-turns AT 
Hence, following procedure should 

the total ampere turns of a composite magnetic path.
 

* From the ratio  = m.m.f. , it is obvious that reluctance = 
reluctance

turns and flux in webers, unit of reluctance is ampere

total reluctance =

= l1 

0 r  A1 0 r  A
 l2 

1 2 

flux 
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 e.m.f. or 
resistance 

Definitions Concerning Magnetic Circuit 

Magnetomotive force (m.m.f.). It drives or tends to drive flux through a magnetic circuit 
and corresponds to electromotive force (e.m.f.) in an electric circuit. 

M.M.F. is equal to the work done in joules in carrying a unit magnetic pole once through the 
entire magnetic circuit. It is measured in ampere-turns. 

between any two points is measured by the work done in carrying a unit charge 
from one points to another, similarly, m.m.f. between two points is measured by the work done in 
joules in carrying a unit magnetic pole from one point to another. 

AT). It is the unit of magnetometre force (m.m.f.) and is given by the 
a magnetic circuit and the current in amperes in those turns.

name given to that property of a material which opposes the
magnetic flux in it. It, in fact, measures the opposition offered to the passage of magnetic flux 
through a material and is analogous to resistance in an electric circuit even in form. Its units is

reluctance = resistance =  l  l  
     A  A 

In other words, the reluctance of a magnetic circuit is the number of amp-turns required per 
circuit. Since 1 AT/Wb = 1/henry, the unit of reluctance is

It is reciprocal of reluctance and implies the case or readiness with which 
is analogous to conductance in electric circuits. It is measured

It is specific reluctance and corresponds to resistivity which is ‘specific 

Composite Series Magnetic Circuit 

composite series magnetic circuit consisting of three different
permeabilities and lengths and one air gap (r = 1). Each path will have

reluctance. The total reluctance is the sum of individual reluctances as they are joined in

How to Find Ampere-turns ? 

6.15 that H = NI/l AT/m or NI = H  l 
AT = H  l  

Hence, following procedure should be adopted for calculating 
composite magnetic path. 

 
 
 
 
 

Fig. 6.26 

, it is obvious that reluctance = m.m.f./. Since m.m.f. is in ampere
reluctance 

turns and flux in webers, unit of reluctance is ampere-turn/weber (AT/Wb) or A/Wb.

  l    l ; 
 A 0 r A 

I = V 
R 

total reluctance =  l  
0 r A 

A2 0 r  A3 0 Ag 
 l3  la 

flux  = 

3 

 m.m.f.  
  l  
0 r A 
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magnetic circuit 

M.M.F. is equal to the work done in joules in carrying a unit magnetic pole once through the 

between any two points is measured by the work done in carrying a unit charge 
from one points to another, similarly, m.m.f. between two points is measured by the work done in 

It is the unit of magnetometre force (m.m.f.) and is given by the 
turns. 

the creation of 
magnetic flux in it. It, in fact, measures the opposition offered to the passage of magnetic flux 
through a material and is analogous to resistance in an electric circuit even in form. Its units is 

turns required per 
is “reciprocal 

It is reciprocal of reluctance and implies the case or readiness with which 
measured in terms 

It is specific reluctance and corresponds to resistivity which is ‘specific 

different magnetic 
have its own 

reluctance. The total reluctance is the sum of individual reluctances as they are joined in series. 

 

Since m.m.f. is in ampere- 

r (AT/Wb) or A/Wb. 
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(i) Find H for each portion of the composite circuit. For air, 
(ii) Find ampere-turns for each path separately by using the relation 
(iii) Add up these ampere

 

 Comparison Between Magnetic and Electric

Magnetic Circuit
 

Fig. 6.27 

1. Flux = m.m.f.  
reluctance 

2. M.M.F. (ampere-turns) 

3. Flux  (webers) 

4. Flux density B (Wb/m2) 

5. Reluctance S =    l    l

 A  0 

6. Permeance (= 1/reluctance)

7. Reluctivity 

8. Permeability (= 1/reluctivity)
9. Total m.m.f. =  S1 +  S

1. Strictly speaking, flux 

2. If temperature is kept constant, then resistance of an electric circuit is constant and is 
independent of the current strength
circuit does depend on flux (and
the slope of B/H curve) is not constant
Value of  is large for low value
values of B and large for large values of

3. Flow of current in an electric circuit involves continuous expenditure of energy but in a 
magnetic circuit, energy is needed

 

 Parallel Magnetic Circuits

Fig. 6.29 (a) shown a parallel magnetic circuit consisting of two parallel magnetic paths 
and ADB acted upon by the same 
The flux produced by the coil wound
outer parallel paths. The reluctance
path. 

Fig. 6.29 (b) shows the equivalent
is = RæR = R/2 

Technology 

for each portion of the composite circuit. For air, H = B/0, otherwise H 
turns for each path separately by using the relation AT = H  l. 

Add up these ampere-turns to get the total ampere-turns for the entire circuit. 

Comparison Between Magnetic and Electric Circuits. 

SIMILARITIES 

Magnetic Circuit Electric Circuit 

 

l 

0 r A 
1/reluctance) 

1/reluctivity) 
S2 +  S3 + ..... 

 
 
 
 
 
 
 

Fig. 6.28 

Current = e.m.f.  
resistance 

E.M.F. (volts) 
Current I (amperes) 
Current density (A/m2) 
resistance R =  l  l 

 
A  A 

Conductance (= 1/resistance) 
Resistivity 
Conductivity (= 1/resistivity) 
9. Total e.m.f. = IR1 + IR2 + IR3 + ..... 

DIFFERENCES 

 does not actually ‘flow’ in the sense in which an electric current

If temperature is kept constant, then resistance of an electric circuit is constant and is 
strength (or current density). On the other hand, the reluctance of

(and hence flux density) established in it. It is so because  (which
constant even for a given material as it depends on the flux

value of B and vice-versa. Hence, reluctance is small (S = l/A
and large for large values of B. 

Flow of current in an electric circuit involves continuous expenditure of energy but in a 
needed only creating the flux initially but not for maintaining

Circuits 

) shown a parallel magnetic circuit consisting of two parallel magnetic paths 
acted upon by the same m.m.f. Each magnetic path has an average length of 2 (

wound on the central core is divided equally at point A between
reluctance offered by the two parallel paths is = half the reluctance

equivalent electrical circuit where resistance offered to the voltage

H = B/0r. 

 

current flows. 

If temperature is kept constant, then resistance of an electric circuit is constant and is 
of a magnetic 

(which equals 
flux density B. 

A) for small 

Flow of current in an electric circuit involves continuous expenditure of energy but in a 
maintaining it. 

) shown a parallel magnetic circuit consisting of two parallel magnetic paths ACB 
. Each magnetic path has an average length of 2 (l1 + l2). 

between the two 
reluctance of each 

voltage source 



 

 

It should be noted that reluctance
treatment. 

 

 Series-Parallel Magnetic

Such a circuit is shown in 
6.30 (a). It shows two parallel
netic circuits ACB and ACD 
nected across the common magnetic 
path AB which contains an air
of length lg. As usual, the flux 
the common core is divided equally 
at point A between the two parallel 
paths which have equal reluctance. 
The reluctance of the path AB 
sists of (i) air gap reluctance and
the reluctance of the central core
tral core AB equals only the air
tances. Hence, the m.m.f. required
and (ii) that required for either

The equivalent electrical circuit
voltage source is = R1 + RæR 

 Leakage Flux and Hopkinson’s Leakage

Fig. 6.31 detected by a compass. Even in the best designed dynamos, it is found

Magnetism and Electromagnetism

Fig. 6.29 

reluctance offered by the central core AB has been neglected in

Parallel Magnetic Circuits 

Such a circuit is shown in  Fig. 
). It shows two parallel mag- 

ACD con- 
magnetic 

which contains an air-gap 
. As usual, the flux  in 

equally 
between the two parallel 

paths which have equal reluctance. 
 con- 

and (ii) Fig. 6.30 

core which comparatively negligible. Hence, the reluctance
air-gap reluctance across which are connected two equal parallel

required for this circuit would be the sum of (i) that required for
either of two paths (not both) as illustrated in Ex. 6.19, 6.20 and

circuit is shown in Fig. 6.30 (b) where the total resistance offered
R = R1 + R/2. 

Leakage Flux and Hopkinson’s Leakage Coefficient 

Leakage flux is the flux which follows a path not intended for it. In 
Fig. 6.31 is shown an iron ring wound with a coil and having an air
gap. The flux in the air-gap is known as the useful flux because it is 
only this flux which can be utilized for various useful purposes.

It is found that it is impossible to confine all the flux
path only, although it is usually possible to confine most of
current to a definite path, say a wire, by surrounding it with
Unfortunately, there is no known insulator for magnetic flux. 
which is a splendid insulator of electricity, is unluckily a fairly good 
magnetic conductor. Hence, as shown, some of the flux leaks
air surrounding the iron ring. The presence of leakage flux

detected by a compass. Even in the best designed dynamos, it is found
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in the above 

reluctance of the cen- 
parallel reluc- 
for the air-gap 
and 6.21. 

offered to the 

Leakage flux is the flux which follows a path not intended for it. In 
Fig. 6.31 is shown an iron ring wound with a coil and having an air- 

gap is known as the useful flux because it is 
only this flux which can be utilized for various useful purposes. 

flux to the iron 
of the electric 

with insulation. 
Unfortunately, there is no known insulator for magnetic flux. Air, 
which is a splendid insulator of electricity, is unluckily a fairly good 

leaks through 
flux can be 

detected by a compass. Even in the best designed dynamos, it is found 
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leakage coefficient  =
 total flux 

 
useful flux 

or  = 
t

 


that 15 to 20% of the total flux produced leaks away without being utilised usefully. 
If, t = total flux produced ;  = useful flux available in the air-gap, then 

 
 

In electric machines like motors and generators, magnetic leakage is undesirable, because, al- 
though it does not lower their power efficiency, yet it leads to their increased weight and cost of 
manufacture. Magnetic leakage can be minimised by placing the exciting coils or windings as close 
as possible to the air-gap or to the points in the magnetic circuit where flux is to be utilized for useful 
purposes. 

It is also seen from Fig. 6.31 that there is fringing or spreading of lines of flux at the edges of the 
air-gap. This fringing increases the effective area of the air-gap. 

The value of  for modern electric machines varies between 1.1 and 1.25. 

 Magnetisation Curves 

The approximate magnetisation curves of a few magnetic materials are shown in Fig. 6.32. 

These curves can be determined by the following methods provided the materials are in the 
form of a ring : 

(a) By means of a ballistic galvanometer and (b) By means of a fluxmeter. 

 Magnetisation Curves by Ballistic Galvanometer 

In Fig. 6.33 shown the specimen 
ring of uniform cross-section wound 
uniformly with a coil P which is con- 
nected to a battery B through a revers- 
ing switch RS, a variable resistance R1 

and  an  ammeter.   Another secondary 
coil S also wound over a small portion 
of the ring and is connected through a 
resistance R to a ballistic galvanometer 
BG. 

The current through the primary P 
can be adjusted with the help of R1. Sup- 
pose the primary current is I. When the 
primary current is reversed by means of 
RS, then flux is reversed through S, 
hence an induced e.m.f. is produced in 
it which sends a current through BG. 
This current is of very short duration. 
The first deflection or ‘throw’ of the BG 
is proportional to the quantity of elec- 
tricity or charge passing through it so 
long as the time taken for this charge to 
flow is short as compared with the time 
of one oscillation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.32 

If  = first deflection or ‘throw’ of the galvanometer when primary current I is reversed. 

k = ballistic constant of the galvanometer i.e. charge per unit deflection. 

then, charge passing through BG is = k coulombs ...(i) 
Let = flux in Wb produced by primary current of I amperes ; t = time of reversal of flux ; then 

rate of change of flux = 2 Wb/s 
t 
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Fig. 6.33 

If N2 is the number of turns in secondary coil S, then average e.m.f. induces in it is 
 

=  N2 . 
2 volt. 
t 

Secondary current or current through BG = 
2N2  

amperes 
Rst 

where Rs is the total resistance of the secondary circuit. 
 

Charge flowing through BG = average current  time = 
2 N2  

 t  
2 N2 

Rs t Rs 
  

coulomb ...(ii) 

Equation (i) and (ii), we get k = 
2 N2  

  =
 

Rs 

k Rs Wb
 

2N2 

If A m2 is the cross-sectional area of the ring, then flux density is 
 
 

If N1 is the number of primary turns and l metres the mean circumference of the ring, then, 
magnetising force H = N1I/l AT/m. 

The above experiment is repeated with different values of primary current and form the data so 
obtained, the B/H curves or magnetisation curves can be drawn. 

 Magnetisation Curves by Fluxmeter 

In this method, the BG of Fig. 6.31 is replaced by a fluxmeter which is just a special type of 
ballistic galvanometer. When current through P is reversed, the flux is also reversed. The deflection 
of the fluxmeter is proportional to the change in flux-linkages of the secondary coil. If the flux is 
reversed from +  to , the change in flux-linkages in secondary S in = 2  N2. 

If  = corresponding deflection of the fluxmeter 

C = fluxmeter constant i.e. weber-turns per unit deflection. 

then, change of flux-linkages in S = C 


 2 N2 =  C or  = C Wb ; 
N2 

 

 
Solution. Magnetising force of the solenoid is H = Nl/l AT/m 

7 4 2 
B = 0 H = 0 NI/l = 4  10  1000  4/1 = 16  10 Wb/m 
Flux linked with the search coil is = BA = 64  108 Wb 

Total change of flux-linkages on reversal 

Example 6.8. A fluxmeter is connected to a search-coil having 600 turns and mean area of 
4 cm2. The search coil is placed at the centre of an air-cored solenoid 1 metre long and wound with 
1000 turns. When a current of 4 A is reversed, there is a deflection of 20 scale divisions on the 
fluxmeter. Calculate the calibration in Wb-turns per scale division. 

(Measurements-I, Nagpur Univ. 1991) 

B =   C Wb/m2 
A 2N2 A 

B =   
k Rs Wb/m2 

A 2N2 A 
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Example 6.9. A ballistic galvanometer, connected to a search coil for measuring flux density in 
a core, gives a throw of 100 scale divisions on reversal of flux. The galvanometer coil has a resis- 
tance of 180 ohm. The galvanometer constant is 100 C per scale division. The search coil has an 
area of 50 cm2, wound with 1000 turns having a resistance of 20 ohm. Calculate the flux density in 
the core. (Elect. Instru & Measu. Nagpur Univ. 1992) 

=  2   64  108  600 Wb-turns –Art. 6.29 

= 7.68  104 Wb-turns 
 

Fluxmeter constant C is given by = 
Change in flux-linkages

 
deflection produced 

= 7.68  104/20 = 1.206  104 Wb-turns/division 

Solution. As seen from Art. 6.28. 

k  =  2N2/Rs or  = kRs /2N2 Wb 

 BA   = kRs /2N2 or B = kRs /2N2A 
Here k = 100 C/division = 100  106 = 104 C/division 

 = 100; A = 50 cm2 = 5  103 m2 

Rs = 180 + 20 = 200 
 B = 104  100  200/2  1000  5  103 = 0.2 Wb/m2 

 
 
 
 
 
 
 

Solution. Here, change of flux-linkages = 2 N2 = 8  10 Wb-turns 3 

 2  10 = 8  103 or  = 4  104 Wb and A = 2.5  104 m2 
 

4  104 
 

 

2 Nl  
400  1.8 

 B =  
 

2.5  104 
= 1.6 Wb/m ; H =   

l 0.24 
= 955 AT/m 

Now  





=    B  ;   =    B     1.6  = 1333 
0     r H r 0 H 4 107  955 

 

 
Solution. Reference may please be made to Art. 6.28. 
Here N1 = 100 ; N2 = 200 : A = 3.5  10 m ; l = 100 cm = 1m 4 2 

k = 106 C/division,  = 100 divisions; R 
 

= 2000 ; I = 10 A 

B = 
k Rs 

2N2 A 
106  100  2000 

 

2  200  3.5  104 
= 1.43 Wb/m2 

Magnetising force H = N1 I/l = 100  10/1 = 1000 AT/m 

 = B  1.43 = 1.43  103 H/m 
H 1000 

Example 6.11. An iron ring of 3.5 cm2 cross-sectional area with a mean length of 100 cm is 
wound with a magnetising winding of 100 turns. A secondary coil of 200 turns of wire is connected 
to a ballistic galvanometer having a constant of 1 micro-coulomb per scale division, the total resis- 
tance of the secondary circuit being 2000 . On reversing a current of 10 A in the magnetising coil, 
the galvanometer gave a throw of 200 scale divisions. Calculate the flux density in the specimen and 
the value of the permeability at this flux density. (Elect. Measure, A.M.I.E Sec.B. 1992) 

Example 6.10. A ring sample of iron, fitted with a primary and a secondary winding is to be 
tested by the method of reversals to obtain its B/H curve. Give a diagram of connections explain 
briefly how the test could be carried out. 

In such a test, the primary winding of 400 turns carries a current of 1.8 A. On reversal, a 
change of 8  103 Wb-turns is recorded in the secondary winding of 10 turns. The ring is made up 
of 50 laminations, each 0.5 mm thick with outer and inner diameters of 25 and 23 cm respectively. 
Assuming uniform flux distribution, determine the values of B, H and the permeability. 

s
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i

  Note.  The relative permeability is given by   =  /   = 1.43   103/4   107  = 1137.  
r 0 

 
Solution. Length of the magnetic path l =  D = 0.1  m 
Magnetising Force, H = NI/l = 320  10/0.1  = 10,186 AT/m 
Flux density B = µ µ H = 4  107  µ  10,186 = 0.0128 µ ...(i) 

0    r r r 

Now, from Hilbert’s Magnetic standard, we have 

2.5  104  10 = K  102, K = 2.45  105 

On reversing a current of 10 A in the magnetising winding, total change in Weber-turns is 
5 5 5 

2 Ns = 2.45  10  272 or 2  220   = 2.45  10  272 or  = 1.51  10 Wb 
 B = /A = 1.51  105/33.5  106 = 0.45 Wb/m2 

Substituting this value in Eq. (i), we have 0.0128 µr = 0.45,  µr = 35.1 

 
Solution. Total AT reqd. =  S +  S = g lg 




i li    
 

g    g i i 0 Ag 0 r Ai B 
Now, air-gap flux  = 0.5 mWb = 0. 5  103 Wb, l = 1 mm = 1  103 m; A = 500 mm2 

s g g 

= 500  106 m2 
Flux in the iron ring, i = 1.2  0.5  10 Wb 3 

Net cross-sectional area = A  stacking factor = 500  106  0.9 m2 

 
0.5  103  1  103 1.2  0.5  103  800  103 

 total AT reqd. = 

4  107  500  106 
 

4  107  1000  (0.9  500  106) 
 1644

 
 I = 1644/1000 = 1.64 A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cast Steel Path (Fig. 6.34) 
Fig. 6.34

 

Example 6.13. A laminated soft iron ring of relative permeability 1000 has a mean circumfer- 
ence of 800 mm and a cross-sectional area 500 mm2. A radial air-gap of 1 mm width is cut in the 
ring which is wound with 1000 turns. Calculate the current required to produce an air-gap flux of 
0.5 mWb if leakage factor is 1.2 and stacking factor 0.9. Neglect fringing. 

Example 6.12. An iron ring has a mean diameter of 0.1 m and a cross-section of 33.5  106 m2. 
It is wound with a magnetising winding of 320 turns and the secondary winding of 220 turns. On 
reversing a current of 10 A in the magnetising winding, a ballistic galvanometer gives a throw of 272 
scale divisions, while a Hilbert Magnetic standard with 10 turns and a flux of 2.5  104 gives a 
reading of 102 scale divisions, other conditions remaining the same. Find the relative permeability 
of the specimen. (Elect. Measu. A.M.I.E. Sec B, 1991) 

Solution.  = 8  104 Wb ; A = 10 cm2 = 103 m2; 
B = 8  104/103 = 0.8 Wb/m2 

Air gap 

0 

Total air-gap length = 2  0.2 = 0.4 mm 

= 4  104 m 

 AT required = H  l = 6.366  105  4  104 = 255 

H = B/µ = 0.8/4  107 = 6.366  105 AT/m 

Example 6.14. A ring has a diameter of 21 cm and a cross-sectional area of 10 cm2. The ring 
is made up of semicircular sections of cast iron and cast steel, with each joint having a reluctance 
equal to an air-gap of 0.2 mm. Find the ampere-turns required to produce a flux of 8  104 Wb. The 
relative permeabilities of cast steel and cast iron are 800 and 166 respectively. 
Neglect fringing and leakage effects. 

(Elect. Circuits, South Gujarat Univ.) 



280 Electrical Technology 
 

r

0

r

Solution. By applying the Right-Hand Thumb rule, it is found 
that fluxes produced by the current Ia and Ib are directed in the 
clockwise direction through the iron core whereas that produced 
by current Ic is directed in the anticlockwise direction through the 
core. 

Fig. 6.35 

Example 6.17. A rectangular iron core is shown in Fig. 6.35. It has a mean length of magnetic 
path of 100 cm, cross-section of (2 cm   2 cm), relative permeability of 1400 and an air-gap of    
5 mm cut in the core. The three coils carried by the core have number of turns Na = 335, Nb = 600 
and Nc = 600 ; and the respective currents are 1.6 A, 4 A and 3 A. 
The directions of the currents are as shown.  Find the flux in the 
air-gap. (F.Y. Engg. Pune Univ. ) 

H = B/µ0 µr = 0.8/4  107  800 = 796 AT/m 

path =  D/2 = 21 /2 = 33 cm = 0.33 m 

AT required = H  l = 796  0.33 = 263 
Cast Iron Path 

H = 0.8/  107  166 = 3,835 AT/m ; path = 0.33 m 

AT required = 3,835  0.33 = 1265 
Total AT required = 255 + 263 + 1265 = 1783. 

 

 
Solution. (a) Steel ring 

H = B/µ 
 
µ = 1/4  107   AT/m = 0.7957  107/ AT/m 

0    r r r 
m.m.f. = H  l = (0.7957  107/ )  29.9  102 = 0.2379  106/µ AT 

(b) Air-gap 
r r 

 H = B/µ0 = 1/4  10 = 0.7957  10 AT/m 7 6 

m.m.f. reqd. = H  l = 0.7957  106  (1  103) = 795.7 AT 

Total m.m.f. = (0.2379  106/ ) + 795.7 

Total m.m.f. available = NI = 500  4 = 2000 AT 
(i)   2000   =  (0.2379    106/ ) + 795.7    = 197.5 

 
(ii) Inductance of the winding = N  

I 

r 

 NBA 
I 

r 

 
500  1  6  104 

4 

 
= 0.075 H 

 
Solution.  = 0.24 mWb; A = 3 cm2 = 3  104 m2; 
B = /A = 0.24  103/3  104 = 0.8 Wb/m2 
AT for iron ring = H  l = (B/µ µ )  l = (0.8/4  107  µ )  0.25 = 1.59  105/

0    r r r 

AT for air-gap = H  l = (B/µ )  l = (0.8/4  107)  0.4   103 = 255 

Total AT reqd. = (1.59  105/ ) + 255 ; total AT provided = 200  2 = 400 
 (1.59  105/ ) + 255 = 400 or  = 1096. 

r r 

Example 6.16. An iron ring has a X-section of 3 cm2 and a mean diameter of 25 cm. An air-gap 
of 0.4 mm has been cut across the section of the ring. The ring is wound with a coil of 200 turns 
through which a current of 2 A is passed. If the total magnetic flux is 0.24 mWb, find the relative 
permeability of iron, assuming no magnetic leakage. (Elect. Engg. A.M.Ae.S.I., June 1992) 

Example 6.15.  A mild steel ring of 30 cm mean circumference has a cross-sectional area of  
6 cm2 and has a winding of 500 turns on it. The ring is cut through at a point so as to provide an 
air-gap of 1 mm in the magnetic circuit. It is found that a current of 4 A in the winding, produces a 
flux density of 1 T in the air-gap. Find (i) the relative permeability of the mild steel and (ii) induc- 
tance of the winding. (F.E. Engg. Pune Univ.) 
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Example 6.18. A series magnetic circuit comprises of three sections (i) length of 80 mm with 
cross-sectional area 60 mm2, (ii) length of 70 mm with cross-sectional area 80 mm2 and (iii) and air- 
gap of length 0.5 mm with cross-sectional area of 60 mm2. Sections (i) and (ii) are if a material 
having magnetic characteristics given by the following table. 

Determine the current necessary in a coil of 4000 turns wound on section (ii) to produce a flux 
density of 0.7 Tesla in the air-gap.  Neglect magnetic leakage. (F.E. Pune Univ. May 1990) 

Example 6.19. A magnetic circuit 
made of mild steel is arranged as shown 
in Fig. 6.36. The central limb is wound 
with 500 turns and has a cross-sectional 
area of 800 mm2. Each of the outer limbs 
has a cross-sectional area of 500 mm2. 
The air-gap has a length of 1 mm. 
Calculate the current rquired to set up a 
flux of 1.3 mWb in the central limb 
assuming no magnetic leakage and 
fringing. Mild steel required 3800 AT/m 
to produce flux density of 1.625 T and 850 
AT/m to produce flux density of 1.3 T. 

(F.Y. Engg. Pune Univ. ) 

 total m.m.f. = Na Ia + Nb Ib Nc Ic = 335  1.6 + 600  4 600  3 = 1136 AT 
   I 5  103 6 

 Reluctance of the air-gap = 
0 

A 
 

4 107  4  104 

= 9.946  10 AT/Wb 

  l  100  (0.5)  102 6 
 

Reluctance of the iron path =   A
 

4 107  1400  4  104 
= 1.414  10 AT/Wb 

Total reluctance = (9.946 + 1.414)  106 = 11.36  106 AT/Wb 

The flux in the air-gap is the same as in the iron core. 

Air-gap flux =     m.m.f.         1136 = 100  106 Wb = 100 Wb 
reluctance 11.36  106 

 
 
 
 
 

H (AT/m) 100 210 340 500 800 1500 
B (Tesla) 0.2 0.4 0.6 0.8 1.0 1.2 

 
 

Solution. Section (i) It has the same cross-sectional area as the air-gap. Hence, it has the same 
flux density i.e. 0.7 Tsela as in the air-gap. The value of the magnetising force H corresponding to 
this flux density of 0.7 T as read from the B-H plot is 415 AT/m. 

m.m.f. reqd = H  l = 415  (80  103) = 33.2 AT 
Section (ii) Since its cross-sectional area is different from that of the air-gap, its flux density 

would also be different even though, being a series circuit, its flux would be the same. 
Air-gap flux = B  L = 0   (60   106) = 42   106 Wb 
Flux density in this section = 42  106/80  106 = 0.525 T 
The corresponding value of the H from the given garph is 285 AT/m 
m.m.f. reqd, for this section = 285  (70  103) = 19.95 AT. 
Air-gap 
H = B/ = 0.7/4  107 = 0.557  106 AT/m 

0 

 m.m.f. reqd. = 0.557  106  (0.5  10 3) = 278.5 AT 
Total m.m.f. reqd. = 33.2 + 19.95 + 278.5 = 331.6 
 NI = 331.6 or I = 331.6/4000 = 0.083 A 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.36 

0



r
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Solution. Flux in the central limb is = 1.3 mWb = 1.3  103 Wb 
Cross section A = 800 mm2 =800  106 m2 
 B = /A = 1.3  106 /800  106 

=  1.625 T 
Corresponding value of H for this flux density is given as 3800 AT/m. 
Since the length of the central limb is 120 mm. m.m.f. required is = H  l = 3800  (120  103) 

= 456 AT/m. 
Air-gap 
Flux density in the air-gap is the same as that in the central limb. 

H = B/0 = 1.625/4  107 = 0.1293  107 AT/m 3 
Length of the air-gap = 1 mm = 10 m 
m.m.f. reqd. for the air-gap = H  l = 0.1293  107  103 = 1293 AT. 
The flux of the central limb divides equally at point A in figure along the two parallel path ABCD 

and AFED. We may consider either path, say ABCD and calculate the m.m.f. required for it. The 
same m.m.f. will also send the flux through the other parallel path AFED. 

Flux through ABCD = 1.3  103/2 = 0.65  103 Wb 
Flux density B = 0.65  103/500  106 = 1.3 T 
The corresponding value of H for this value of B is given at 850 AT/m. 
    m.m.f. reqd. for path ABCD = H  l = 850  (300  103) = 255 AT 
As said above, this, m.m.f. will also send the flux in the parallel path AFED. 
Total m.m.f. reqd. = 456 + 1293 + 255 = 2004 AT 

Since the number of turns is 500, I = 2004/500 = 4A. 

Example 6.20. A cast steel d.c. electromagnet shown in Fig. 6.37 has a coil of 1000 turns on its 
central limb. Determine the current that the coil should carry to produce a flux of 2.5 mWb in the 
air-gap. Neglect leakage. Dimensions are given in cm. The magnetisation curve for cast steel is as 
under : 

Flux density (Wb/m2) : 0.2 0.5 0.7 1.0 1.2 
Amp-turns/metre : 300 540 650 900 1150 

 
Solution. Two points should be noted 

(i) there are two (equal) parallel paths 
ACDE and AGE across the central path AE. 

(ii) flux density in either parallle path is 
half of that in the central path because flux 
divides into two equal parts at point A. 

Total m.m.f. required for the whole 
electromagnet is equal to the sum of the 
following three m.m.fs. 

(i) that required for path EF 
(ii) that required for air-gap 

(Electrotechnics-I, ; M.S. Univ. Baroda) 

 
 

 

 

 
Fig. 6.37 

(iii) that required for either of the two parallel paths ; say, path ACDE2 

Flux density in the central limb and air gap is 
= 2.5  103/ (5  5)  104 = 1 Wb/m2 

Corresponding value of H as found from the given data is 900 AT/m. 
    AT for central limb = 900  0.3 = 270 
H in air-gap = B/ = 1/4  107 = 79.56  104 AT/m 

AT required 
0 

= 79.56  104  103 = 795.6 
Flux density in path ACDE is 0.5 Wb/m2 for which corresponding value of H is 540 AT/m. 
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Example 6.22. A ring of cast steel has an external diameter of 24 cm and a square cross-section 
of 3 cm side. Inside and cross the ring, an ordinary steel bar 18 cm  3 cm  0.4 cm is fitted with 
negligible gap. Calculating the number of ampere-turns required to be applied to one half of the 
ring to produce a flux density of 1.0 weber per metre2 in the other half. Neglect leakge. The B-H 
characteristics are as below : 

(Elect. Technology, Indore Univ.) 

Example 6.21. A cast steel magnetic structure made for a bar of section 8 cm  2 cm is shown 
in Fig. 6.35. Determine the current that the 500 turn-magnetising coil on the left limb should carry 
so that a flux of 2 mWb is produced in the right limb. Take r = 600 and neglect leakage. 

(Elect. Technology Allahabad Univ. 1993) 

 AT required for path ACDE = 540  0.6 = 324 
Total AT required = 270 + 795.6 + 324 = 1390 ;Current required = 1390/1000 = 1.39 A 

Solution. Since path C and D are in parallel with each other w.r.t. path E (Fig. 6.38), the m.m.f. 
across the two is the same. 

1 S1 = 2 S2 
 

   15
 

= 2  25 
1 A  A 

 1 = 10/3 mWb 
  = 1 + 2 = 16/3 mWb 
Total AT required for the whole circuit is equal to the 

sum of 

 
 
 
 

Fig. 6.38 

(i) that required for path E and (ii) that required for either of the two paths C or D. 

Flux density in path E = 
16  103 

 

3  4  104 
 

 40 
3 

Wb/m2 

AT reqd. = 
  40  0.25  4, 420

 

3  4  107  600 
 

 
Flux density in path D = 

2  103 
4  104 

 

5 Wb/m2 

AT reqd. = 
  5  0.25  1658 
4 107  600 

Total AT = 4,420 + 1,658 = 6,078 ; 

Current needed = 6078/500 = 12.16 A 
 
 
 
 
 
 

 For Cast Steel For Ordinary Plate 

B in Wb/m2 

Amp-turn/m 

1.0 

900 

1.1 

1020 

1.2 

1220 

B in Wb/m2 

Amp-turn/m 

1.2 

590 

1.4 

1200 

1.45 

1650 

 

Solution. The magnetic circuit is shown in Fig. 6.39. 

The m.m.f. (or AT) produced on the half A acts across the parallel magnetic circuit C and D. 
First, total AT across C is calculated and since these amp-turns are also applied across D, the flux 
density B in D can be estimated. Next, flux density in A is calculated and therefore, the AT required 
for this flux density. In fact, the total AT (or m.m.f.) required is the sum of that required for A and that 
of either for the two parallel paths C or D. 

Value of flux density in C = 1.0 Wb/m2 

Mean diameter of the ring = (24 + 18)/2 = 21 cm 
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0

Example 6.23. Show how the ampere-turns per pole required to produce a given flux in d.c. 
generator are calculated. 

Find the amp-turns per pole required to produce a flux of 40 mWb per pole in a machine with a 
smooth core armature and having the following dimensions : 

Length of air gap = 5 mm Area of air-gap = 500 cm2 

Length of pole = 12 cm Sectional area of pole core = 325 cm2 

Relative permeability of pole core = 1,500 

Length of magnetic path in yoke betwen pole = 65 cm 

Cross-sectional area of yoke = 450 cm2 ; Relative permeability of yoke = 1,200 

Leakage coefficient = 1.2 

The ampere-turns for the armature core may be neglected. 

Mean circumference =   21 = 66 cm 

Length of path A or C = 66/2 = 33 cm = 0.33 m 

Value of AT/m for a flux density of 1.0 

Wb/m2 as seen from the given B.H characteristics 
= 900 AT/m 

 Total AT for path C = 900  0.33 = 297. The same 
ATs. are applied across path D. 

Length of path D = 18 cm = 0.18 m  AT/m  for  
path D = 297/0.18 = 1650 

Value of B corresponding to this AT/m from given table 
is = 1.45 Wb/m2 

Flux through C = B  A = 1.0  9  104 = 9   104 Wb 
Flux through D = 1.45  (3  0.4  104) = 1.74  104 Wb 
 Total flux through A = 9  104 + 1.74  104 = 10.74  104 Wb. 

Flux density through A = 10.74  104/9  104 = 1.193 Wb/m2 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.39 

No. of AT/m reqd. to produce this flux density as read from the given table = 1200 (approx.) 

 Amp-turns required for limb A = 1200  0.33 = 396 
Total AT required = 396 + 297 = 693 

Solution. Air-gap  = 40 mWb = 4  102 Wb ; A = 500  104 = 5  103 m2 

 B = 4  102/5  102 = 0.8 Wb/m2 ; H = B/ = 0.8/4  107 = 63.63  104 AT/m 

Air-gap length = 5  103 m ; AT reqd. = 63.63  104  5  103 = 3181.5 

Pole Core 

 = 1.2  4  102 = 4.8  102 Wb ; A = 325  104 m2 
B = 4.8  102/325  104 = 1.477 Wb/m2 
H = B/0  = 1.477/4  10  1,500 = 783 AT/m 7 

 

 
Yoke Path 

Pole length = 0.12 m ; AT reqd. = 783  0.12 = 94 

 
flux = half the pole flux = 0.5  4  102 = 2  102 Wb 

A = 450 cm2 = 45  103 m2 ; B = 2  102/45  103 = 4/9 Wb/m2 

H  =  4/ 9  294.5 AT/m Yoke length = 0.65 m 
4 107  1, 200 

At reqd = 294.5  0.65, Total AT/pole = 3181.5 + 94 + 191.4 = 3,467 

r
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Example 6.25. A wooden ring has a circular cross-section of 300 sq. mm and a mean diameter 
of the ring is 200 mm. It is uniformly wound with 800 turns. 

 

 
Solution. NI = 1,500 (given) or N . V  N . 60  1, 500 

R R 
 

 
 

 

 
 

 
 
 
 
 
 

Calculate : 

(i) the field strength produced in 
the coil by a current of 2 amperes :(as- 
sume = 1) 

(ii) the magnetic flux density pro- 
duced by this current and 

(iii) the current required to produce 
a flux density of 0.02 wb/m2. 

[Nagpur University (Summer 2000)] 
Solution. The question assumes 

that the flux-path is through the ring, as 
shown by the dashed line, in figure, at 
the mean diameter, in Fig. 6.40. 

With a current of 2 amp, 

Coil m.m.f. = 800  2 = 1600 AT 

Mean length of path =   0.2 
= 0.628 m 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.40 

1600 
0.628 = 2548 amp-turns/meter 

(ii) B = 0  H = 4  10  1  2548 7 
 

= 3.20  103 Wb/m2 
This Flux density is produced by a coil current of 2-amp 
(iii) For producing a flux of 0.02 Wb/m2, the coil current required is 

 

2   0.02  
0.0032 = 12.5 amp 

 

Example 6.26. A magnetic core in the form of a closed circular ring has a mean length of 30 cm 
and a cross-sectional area of 1 cm2. The relative permeability of iron is 2400. What direct-current 
will be needed in the coil of 2000 turns uniformly wound around the ring to create a flux of 0.20 mWb 
in iorn ? If an air-gap of 1 mm is cut through the core perpendicualr to the direction of this flux, what 
current will now be needed to maintain the same flux in the air gap ? 

[Nagpur University Nov. 1999] 

r

Example 6.24. A shunt field coil is required to develop 1,500 AT with an applied voltage of 
60 V. The rectangular coil is having a mean length of turn of 50 cm. Calculate the wire size. 
Resistivity of copper may be assumed to be 2 × 10–6 -cm at the operating temperature of the coil. 
Estimate also the number of turns if the coil is to be worked at a current density of 3 A/mm2. 

(Basis Elect. Machines Nagpur Univ. 1992) 

(i) H = 


 


 



R 

 N 
25 

D
4 

= 
 
= 

 
= 

N ohm 
25 

104n 
A 

0/25 

l 2  106  50 N 
Also R =   . 

A 
 

A
 

or A = 25  104 cm2 or A = 0.25 mm2 

or D = 0.568 mm 

 Current in the coil = 3  0.25 = 0.75 A  

Now, NI = 1,500 ;  N = 1,500/0.75 = 2,000 
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[Nagpur University, November 1998] 

Permeability of free space = 4 × 107 
Neglect Leakage and fringing effects. 

Example 6.27. An iron-ring of mean length 30 cm is made up of 3 pieces of cast-iron. Each 
piece has the same length, but their respective diameters are 4, 3 and 2.5 cm. An air-gap of length 
0.5 mm is cut in the 2.5 – cm. Piece. If a coil of 1000 turns is wound on the ring, find the value of the 
current has to carry to produce a flux density of 0.5 Wb/m2 in the air gap. B-H curve data of cast- 
iron is as follows : 

Note : Due to the high permeability of iron, which is given here as 2400, 1 mm of air-gap length is 
equivalent magnetically to 2400 mm of length through the core, for comparison of mmf required. 

1

Solution.  
 
Reluctance of core = 

 
    1     L  1  

30  10


0 r a 10 107  2400 1  104 
 

 

30  109 
= 

4 2400  1 
 995223 MKS units 

 = 0.2  103 Wb 

MMF required =   Rel 

= 0.2  103  995223 = 199 amp-tunrs 

Direct current required through the 2000 turn coil 
 

=    199   0.0995 amp 
2000 

Reluctance of 1 mm air gap  
 

  1  
1 103  108 


 


Addition of two reluctances 

= 
4 107 

1 104 4 
7961783 MKS units 

= 995223 + 7961783 = 8957006 MKS units 

MMF required to establish the given flux 

= 0.2  103  8957006 = 1791 amp turns 

Current required through the coil 
 

 

=   
1791 
2000 

0.8955 amp 

 
 
 
 
 
 
 
 

B (Wb/m2) : 0.10 0.20 0.30 0.40 0.50 0.60 
H (AT/m) : 280 680 990 1400 2000 2800 

 

 
Solution. From the data given, plot the B-H curve for cast-iron 

The magnetic circuit has four parts connected in series 

Part 1. Air-gap 0.5 mm length, B = 0.5 wb/m2, and 

Permeability of free sapce is known 
7 

H1 =  B/0 = 0.5   10 /(4) = 398100 
AT for gap = (0.5  103)  H = 199 

Part 2. 2.5 cm diameter, 10 – cm long, cast-iron ring portion B and H are to be related with the 
help of given data. In this, out of 10 cms. 0.5 mm air-gap is cut, and this portion of ring will have cast- 
iron length of 99.5 mm. 

For B = 0.5 wb/m2, H = 2000 AT/m 

AT2 = 2000  9.95  102 = 199 
2
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Example 6.28. A steel-ring of 25 cm mean diameter and of circular section 3 cm in diameter 
has an air-gap of 1.5 mm length. It is wound uniformly with 700 turns of wire carrying a current of 
2 amp. Calculate : (i) Magneto motive force (ii) Flux density (iii) Magnetic flux (iv) Relative perme- 
ability. Neglect magnetic leakage and assume that iron path takes 35 % of total magneto motive 
force. [Nagpur University, April 1996] 

 

 
Fig. 6.41 

Part 3. 3-cm diameter, 10-cm long, cast-iron ring-portion. 

Here B = 0.50  (2.5/3)2 = 0.347 Wb/m2 

For this B, H is read from B-H curve. 

H3 = 1183 AT/m 
AT3 = 1183  10  10 = 118.3 2 

Part 4. 4 cm. Diameter, 10 cm long, cast-iron ring portion. 

Here, B = 0.50  (2.5  4)2  0.195 Wb/m2 

From, B–H curve, corresponding H is 661 

AT4 = 661  10  102 = 66 AT 
Since all these four parts in series, the total m.m.f. required is obtained by adding the above terms. 

AT = 199 + 199 + 118 + 66 = 582 

Coil Current = 582/1000 = 0.582 amp 

Additional observations. 
(a) The 2.5-cm diameter portion of the ring has H = 2000 for B = 0.5 Wb/m2. From this, the 

relative permeability of cast-iron can be foud out. 

0 r = 0.5/2000, giving r = 199 
An air-gap of 0.5 mm is equivalent of 99.5 mm of cast-iron length. Hence, the two m.m.fs. are 

equal to 199 each. 

(b) The common flux for this circuit is obtained from flux-density and the concerned area. 

Hence  = 0.5  (/4)  (2.5  102)2 = 0.02453  102 

= 0.2453 mWb 

Reluctance of total magnetic circuit 

= m.m.f./flux = 582/(2.453  104) 

= 2372650 MKS units 
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Example 6.29. (a) Determine the amp-turns required to produce a flux of 0.38 mWb in an iron- 
ring of mean diameter 58 cm and cross-sectional area of 3 sq. cm. Use the following data for the 
ring : 

(b) If a saw-cut of 1mm width is made in the ring, calculate the flux density in the ring, with the 
mmf remaining same as in (a) above. [Nagpur University, Nov. 1996] 

r

m

Solution. From the given data, length of mean path in the ring ( Lm) is to be calculated. For a 
mean diameter of 25 cm, with 1.5 mm of air-gap length. 

L = (  0.25) (1.5  103) = 0.7835 m 
Cross-sectional area of a 3 cm diameter ring = 7.065  104 
Total m.m.f. due to coil = 700  2 = 1400 amp-turns 
Since iron-path takes 355 of the total mmf, it is 490. 
Remaining mmf of 910 is consumed by the air-gap. 

 
sq.m. 

Corresponding H for air-gap = 910/(1.5  103) = 606666 amp-turns/m. 
If Flux density is Bg, we have 

Bg = 0 H = 4  10  606666 = 0.762 Wb/m 7 2 
 

Iron-ring and air-gap are in series hence their flux is same. Since the two have some cross- 
sectional area, the flux density is also same. The ring has a mean length of 0.7835 m and needs an 
mmf of 490. For the ring. 

H = 490/0.7845 = 625.4 amp-turns / m 

0  r 

r 

= B/H = 0.752/625.4 = 1.218  103 

= (1.218  103) / (4   107) = 970 

Flux = Flux density  Cross-sectional area = 0.762  7.065  104 = 0.538 milli-webers 

Check. µ of 970 means that 1.5 mm of air-gap length is equivalent to (1.5  103  970) = 1.455 
m of length through iron as a medium. With this equivalent. 

 

  mmf of ring  
mmf for (ring + air-gap) 

=  0.785  0.35 
0.785  1.455 

which means that 35 % of total mmf is required for the ring 
 
 

 
B Wb/m2 0.5 1.0 1.2 1.4 

r 2500 2000 1500 1000 

 
 

Solution. Plot the B- r curve as in Fig. 6.42 

 
Fig. 6.42 

g
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Example 6.30. An iron-ring of mean diameter 19.1 cm and having a cross-sectional area of  
4 sq. cm is required to produce a flux of 0.44 mWb. Find the coil-mmf required. 

If a saw-cut 1 mm wide is made in the ring, how many extra amp-turns are required to maintain 
the same flux ? 

B - r curve is as follows : 

[Nagpur University, April 1998] 

r

r

(a) Cross-sectional area = 3 sq. cm = 3  104 sq. m. 

Flux = 38 mWb = 0.38  103 Wb 

Flux density, B = flux/area = (0.38  103)/(3  104) = 1.267 Wb/m2 
Looking into the table relating B and r, interpolation is required for evaluating µr for B = 1.267 

Wb/m2. After 1.2 Wb/m2,  decreases by 500 for a rise of 0.2 in B. Interpolation results into : 

r = 1500  0.067  500  1332 
0.20 

For mean diameter of path in the ring as 0.58 m, the length of the magnetic path in the ring is 

lm    =  p  0.58 = 1.8212 m 

Since B = 0 r H, 
H   =  1.267/(4   107  1332) = 757 

Hence, the required m.m.f. is 

757  1.8212 = 1378 amp-turns 

(b) If a saw-cut of 1 mm is cut in the ring, B is to be calculated with a m.m.f. of 1378. Now the 
magnetic circuit has two components in series : the ring with its B-r curve in Fig. 6.42 and the air- 
gap. Since B is not known, µr cannot be accurately known right in the initial steps. The procedure to 
solve the case should be as follows : 

Let B the flux density as a result of 1378 amp-turns due to the coil. 

For air-gap. Hg = Bg / (4  107) = 0.796  106 AT/m 

ATg = Hg 
6 3 

 Ig = 0.796  10  1  10  B = 796 Bg 

Due to the air-gap, the flux-density is expected to be between 0.5 and 1 Wb/m2, because, in (a) 
above,  (for B = 1.267 Wb/m2) is 1332. One mm air-gap is equivalent to 1332 mm of path added 
in iron-medium. This proportional increase in the reluctance of the magnetic circuit indicates that 
flux density should fall to a value in between 0.5 and 1 Wb/m2. 

For Iron-ring. With flux density expected to be as mentioned above, interpolation formula for 
r can be written as : 

r = 2500 500 [(Bg 0.50) / 0.50] = 3000 1000 Bg 

Hi = Bg / (0  r) = Bg / [0  (3000 1000 Bg)]  
Total m.m.f. = ATg + ATi = 1378, as previously calculated 

Hence, 1378 = 
1.8212  Bg 

 
 

0 (3000  1000 Bg ) 
 796 Bg 

This is a quadratic equation in Bg 

is acceptable. 
and the solution, which gives Bg in between 0.5 & 1.0 Wb/m2 

2 
This results into Bg = 0.925 Wb/m 
Corresponding r = 3000 1000  0.925 = 2075 

 
 
 
 
 
 

B (Wb/m2) 0.8 1.0 1.2 1.4 

μr 2300 2000 1600 1100 
 

Solution. For a mean-diameter of 19.1 cm, Length of mean path, lm =   0.191 = 0.6 m 

g
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Example 6.31.  A 680-turn coil is wound on the central limb of a cast steel frame as shown in 
Fig. 6.43 (a) with all dimensions in cms. A total flux of 1.6 mWb is required in the air-gap. Find the 
current in the magnetizing coil. Assume uniform flux distribution and no leakage. Data for B-H 
curve for cast steel is given. [Nagpur University, Novemeber 1997] 

Cross-sectional area = 4 sq.cm = 4  104 m2 

Flux,  = 0.44 mWb = 0.44  103 Wb 

Flux density, B = 0.44  103/(4  104) = 1.1 Wb/m2 

For this flux density, r = 1800, by simple interpolation. 
H = B/(  ) = 1.1  107/(4  1800) = 486.5 amp-turns/m. 

o r 

m.m.f required = H  lm = 486.5  0.60 = 292 
A saw-cut of 1 mm, will need extra mmf. 
H = B / = 1.1  107/(4) = 875796 

g 

ATg 

g 

= Hg 

o 

 lg = 875796  1.0  103 = 876 

Thus, additional mmf required due to air-gap = 876 amp-turns 

Fig. 6.43 (a) 

 
Fig. 6.43 (b) Fig. 6.43 (c) 

Solution.  = 1.6 mWb through air-gap and central limb 

/2 = 0.8 mWb through yokes 
Corresponding flux densities are : 

Bg = Bc = 1.6 mWb/(16  104) = 1.0 Wb/m2 
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Example 6.32. For the magnetic circuit shown in fig. 6.44 the flux in the right limb is 0.24 mWb 
and the number of turns wound on the central-limb is 1000. Calculate (i) flux in the central limb 
(ii) the current required. 

The magnetization curve for the core is given as below : 

Neglect Leakage and fringing. [Rajiv Gandhi Technical University, Bhopal, Summer 2001] 

y 
MMF-Calculations : 

B = 0.8 m Wb/(16  104) = 0.50 Wb/m2 

2 
(a) For Air gap : For Bg of 1 Wb/m , H = 1.0/o 

ATg = Hg  lg = [1/(4  107)]  (0.1  102) 

= 796 amp turns 

(b) For Central limb : ATc = Hc  lc = 900  0.24 = 216 

 For Bc = 1.00, Hc from data = 900 AT/m 
The yokes are working at a flux-density of 0.50 Wb/m2. From the given data and the correspond- 

ing plot, interpolation can be done for accuracy. 

Hy = 500 + [(0.5 0.45)/(0.775 0.45)]  200 
=  530 AT/m 

Fy = 530  0.68 = 360 
Total mmf required = 796 + 216 + 360 = 1372 

Hence, coil-current = 1372/680 = 2.018 A 

 
 
 
 
 

H (AT/m) : 200 400 500 600 800 1060 1400 

B (Nb/m2) : 0.4 0.8 1.0 1.1 1.2 1.3 1.4 
 
 

Fig. 6.44 

Solution. Area of cross-section of side-limbs = 2  3 = 6 sq.cm 

Area of cross-section of core = 3  4 = 12 sq.cm 

Flux in side Limbs = 0.24 mWb 

Flux density in side Limbs = (0.24  103)/(6  104) = 0.4 Wb/m2 

Since the coil is wound on the central limb and the magnetic circuit is symmetrical, the flux in the 
central limb = 0.48 mWb. Flux density in the central limb = (0.48  103)/(12  104) = 0.4 Wb/m2 

For the flux density of 0.40 Wb/m2, H = 200 AT/m 

g
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Tutorial Problems No. 62 

1. An iron specimen in the form of a closed ring has a 350-turn magnetizing winding through which is 
passed a current of 4A. The mean length of the magnetic path is 75 cm and its cross-sectional area is 
1.5 cm2. Wound closely over the specimen is a secondary winding of 50 turns. This is connected to 
a ballistic glavanometer in series with the secondary coil of 9-mH mutual inductance and a limiting 
resistor. When the magnetising current is suddenly reversed, the galvanometer deflection is equal to 
that produced by the reversal of a current of 1.2 A in the primary coil of the mutual inductance. 
Calculate the B and H values for the iron under these conditions, deriving any formula used. 

[1.44 Wb/m2 ; 1865 AT/m] (London Univ.) 

2. A moving-coil ballistic galvanometer of 150  gives a throw of 75 divisions when the flux through 
a search coil, to which it is connected, is reversed. 

Find the flux density in which the reversal of the coil takes place, given that the galvanometer con- 
stant is 110 C per scale division and the search coil has 1400 turns, a mean are of 50 cm2 and a 
resistance of 20 . [0.1 Wb/m2] (Elect. Meas. & Measuring Inst. Gujarat Univ.) 

Central Limb has a path length of 15 cm. 

Other part carrying 0.24 mWb has a total path length of 35 cm. 

Total mmf required = (200  0.15) + (200  0.35) = 100 AT 
Hence, coil current = 100/1000 = 0.1 Amp. 

 
 
 
 
 

Solution. Area = 0.001 sq.m 

la = 0.3 m, lb = 0.2 m, lc = 0.1 m, lg = 0.1  103 m 
ra = 5000, rb = 1000, rc = 10,000 o = 4  107 

   =  7.5   104 Wb 

(iii) Calculations of Reluctances of four parts of the magnetic circuit : 
 

(a) Reluctance of air gap, R 

 
 

=    1    
0.1103   

    1000  
 

 
= 79618 

eg o
 0.001 4  0.001 

(b) Reluctance of section ‘a’ of ring 
 

 

    1  0.3 


107  0.3 
 

 = Rea = ora 0.001 4  47770  5000  0.001 
= 47770

 
(c) Reluctance of section ‘b’ of the ring 

 
 

    1  0.20 


107 
 

 0.10  
= Reb = orb 

0.001 4 1000 0.001 
= 15923.6

 

(d) Reluctance of section ‘c’ of the ring 
 

= R = 

 
 

    1  0.10  107  0.10 
= 7961 

ec orc 

 

0.001 4 1000 0.001 

Total Reluctance = Reg + Rea + Reb + Rec = 294585 
(i) Total mmf required = Flux  Reluctance 

= 7.5  104  294585 = 221 amp-turns 

(ii) Current required = 221/100 = 2.21 amp 

Example 6.33. A ring composed of three sections. The cross-sectional area is 0.001 m2 for 
each section. The mean arc length are la = 0.3 m, lb = 0.2 m, lc = 0.1 m. An air-gap length of 0.1 mm 
is cut in the ring. Mr for sections a, b, c are 5000, 1000, and 10,000 respectively. Flux in the air gap 
is 7.5  104 Wb. Find (i) mmf (ii) exciting current if the coil has 100 turns, (iii) reluctances of the 
sections. [Nagpur University April 1999] 
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3. A fluxmeter is connected to a search coil having 500 turns and mean area of 5 cm2. The search coil 
is placed at the centre of a solenoid one metre long wound with 800 turns. When a current of 5 A is 
reversed, there is a deflection of 25 scale divisions on the fluxmeter. Calculate the flux-meter constant. 

[104 Wb-turn/division] (Elect. Meas. & Measuring Inst., M.S. Univ. Baroda) 

4. An iron ring of mean length 50 cms has an air gap of 1 mm and a winding of 200 turns. If the 
permeability of iron is 300 when a current of 1 A flows through the coil, find the flux density. 

[94.2 mWb/m3] (Elect. Engg. A.M.Ae.S.I.) 

5. An iron ring of mean length 100 cm with an air gap of 2 mm has a winding of 500 turns. The relative 
permeability of iron is 600. When a current of 3 A flows in the winding, determine the flux density. 
Neglect fringing. [0.523 Wb/m2] (Elect. Engg. & Electronic Bangalore Univ. 1990) 

6. A coil is wound uniformly with 300 turns over a steel ring of relative permeability 900, having a 
mean circumference of 40 mm and cross-sectional area of 50 mm2. If a current of 25 amps is passed 
through the coil, find (i) m.m.f. (ii) reluctance of the ring and (iii) flux. 

[(i) 7500 AT (ii) 0.7  106 AT/Wb (iii) 10.7 mWb] 

(Elect. Engg. & Electronics Bangalore Univ.) 

7. A specimen ring of transformer stampings has a mean circumference of 40 cm and is wound with a 
coil of 1,000 turns. When the currents through the coil are 0.25 A, 1 A and 4 A the flux densities in 
the stampings are 1.08, 1.36 and 1.64 Wb/m2 respectively. Calcualte the relative permeability for 
each current and explain the differences in the values obtained. [1,375,434,131] 

8. A magnetic circuit consists of an iron ring of mean circumference 80 cm with cross-sectional area 12 
cm2 throughout. A current of 2A in the magnetising coil of 200 turns produces a total flux of 1.2 
mWb in the iron. Calculate : 

(a) the flux density in the iron 

(b) the absolute and relative permeabilities of iron 

(c) the reluctance of the circuit 

[1 Wb/m2 ; 0.002, 1,590 ; 3.33  105 AT/Wb] 

9. A coil of 500 turns and resistance 20 is wound uniformly on an iron ring of mean circumference 50 
cm and cross-sectional area 4 cm2. It is connected to a 24-V d.c. supply. Under these conditions, the 
relative permeability of iron is 800. Calculate the values of : 

(a) the magnetomotive force of the coil (b) the magnetizing force 

(c) the total flux in the iron (d) the reluctance of the ring 

[(a) 600 AT (b) 1,200 AT/m (c) 0.483 mWb (d) 1.24  106 AT/Wb] 

10. A series magnetic circuit has an iron path of length 50 cm and an air-gap of length 1 mm. The cross- 
sectional area of the iron is 6 cm2 and the exciting coil has 400 turns. Determine the current required 
to produce a flux of 0.9 mWb in the circuit. The following points are taken from the magnetisation 
characteristic : 

Flux density (Wb/m2) : 1.2 1.35 1.45 1.55  

Magnetizing force (AT/m) : 500 1,000 2,000 4,500 [6.35 A] 

11. An iron-ring of mean length 30 cm is made of three pieces of cast iron, each has the same length but 
their respective diameters are 4, 3 and 2.5 cm. An air-gap of length 0.5 mm is cut in the 2.5 cm piece. 
If a coil of 1,000 turns is wound on the ring, find the value of the current it has to carry to produce a 
flux density of 0.5 Wb/m2 in the air gap. B/H characteristic of cast-iron may be drawn from the 
following : 

B (Wb/m2) : 0.1 0.2 0.3 0.4 0.5 0.6  

(AT/m) : 280 620 990 1,400 2,000 2,8000 [0.58 A] 

Permeability of free space = 4  107 H/m. Neglect leakage and fringing. 

12. The length of the magnetic circuit of a relay is 25 cm and the cross-sectional area is 6.25 cm2. The 
length of the air-gap in the operated position of the relay is 0.2 mm. Calculate the magnetomotive 
force required to produce a flux of 1.25 mWb in the air gap. The relative permeability of magnetic 
material at this flux density is 200. Calculate also the reluctance of the magnetic circuit when the 
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relay is in the unoperated position, the air-gap then being 8 mm long (assume µr, remains constant). 
[2307 AT, 1.18   107 AT/Wb] 

13. For the magnetic circuit 
shown in Fig. 6.45, all di- 
mensions are in cm and all 
the air-gaps are 0.5 mm wide. 
Net thickness of the core is 
3.75 cm throughout. The 
turns are arranged on the cen- 
tre limb as shown. 

Calculate the m.m.f. required 
to produce a flux of 1.7 mWb 
in the centre limb. Neglect 
the leakage and fringing. The 

 
 
 
 
 
 
 
 
 
 

 
Fig. 6.45 Fig. 6.46 

magnetisation data for the material is as follows : 

H (AT/m) : 400 440 500 600 800  

B (Wb/m2) : 0.8 0.9 1.0 1.1 1.2 [1,052 AT] 

14. In the magnetic circuit shown in Fig. 6.46 a coil of 500 turns is wound on the centre limb. The 
magnetic paths A to B by way of the outer limbs have a mean length of 100 cm each and an effective 
cross-sectional area of 2.5 cm2. The centre limb is 25 cm long and 5cm2 cross-sectional area. The 
air-gap is 0.8 cm long. A current of 9.2 A through the coil is found to produce a flux of 0.3 mWb. 

15. The magnetic circuit of a choke is shown in Fig. 6.47. It is designed so that the flux in the central 
core is 0.003 Wb. The cross-section is square and a coil of 500 turns is wound on the central core. 
Calculate the exciting current. Neglect leakage and assume the flux to be uniformly distributed along 
the mean path shown dotted. Dimensions are in cm. 

The characteristics of magnetic circuit are as given below : 

B (Wb/m2) : 0.38 0.67 1.07 1.2 1.26 
H (AT/m) : 100 200 600 1000 1400 

(Elect. Technology I. Gwalior Univ.) 

16. A 680-turn coil is wound on the central limb of the cast steel sheet frame as shown in Fig. 6.48 where 
dimensions are in cm. A total flux of 1.6 mWb is required to be in the gap. Find the current required 
in the magnetising coil. Assume gap density is uniform and all lines pass straight across the gap. 
Following data is given : 

H (AT/m) : 300 500 700 900 1100 
B (Wb/m2) : 0.2 0.45 0.775 1.0 1.13 

(Elect. Technology ; Indore Univ.) 
 
 
 
 
 
 
 
 
 
 

Fig. 6.47 Fig. 6.48 

17. In the magnetic circuit of Fig. 6.49, the core is composed of annealed sheet steel for which a stacking 
factor of 0.9 should be assumed. The core is 5 cm thick. When A  = 0.002 Wb, B  = 0.0008 Wb and 
C   = 0.0012 Wb.  How many amperes much each coil carry and in what direction ? Use of the 
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following magnetisation curves can be made for solving the problem. 
B (Wb/m2) : 0.2 0.4 0.6 0.8 1.0 1.4 1.6 1.8 

H (AT/m2) : 50 100 130 200 320 1200 3800 10,000 

(Elect. Technology, Vikram Univ.) 
 
 
 
 
 
 
 
 
 

Fig. 6.49 
18. A magnetic circuit with a uniform cross-sectional area of 6 cm2 consists of a steel ring with a mean 

magnetic length of 80 cm and an air gap of 2 mm. The magnetising winding has 540 ampere-turns. 
Estimate the magnetic flux produced in the gap. The relevant points on the magnetization curve of 
cast steel are : 
B (Wb/m2) : 0.12 0.14 0.16 0.18 0.20 
H (AT/m) : 200 230 260 290 320 

 
19. Explain the terms related to magnetic circuits : 

[0.1128 m Wb] (City & Guilds, London) 

(i) reluctance (ii) flux density (iii) magnetomotive force (Nagpur University, Summer 2002) 
20. A metal ring of mean diameter of 80 cm is made out of two semi-circular pieces of cast iron and 

cast steel separated at junctions by pieces of copper each of 1 mm thickness. If the ring is uniformly 
wound with 1000 turns, calculate the value of current required to produce a flux density of 0.85 
wb/nV in the ring. 
Given that relative permeability of cast iron as 200, that of cast steel is 1200 and for copper, 
µr = 1. (Nagpur University, Summer 2002) 

21. A 1154 turns coil is wound on the central limb of the case steel frame shown in Fig. 6.50. A total 
flux of 1.6 mwb is required in the air gap. Find the current required through the gap. Assume that 
the gap density is uniform and there is no leakage. Frame dimensions are given in cm. Take 
permeability of cast steel  as 1,200. (Nagpur University, Winter 2002) 

 
 
 
 
 
 
 
 

 
Fig. 6.50 

22. Explain the terms related to magnetic circuits : 
(i) Reluctance   (ii) Flux density   (iii) Coercive force  (iv) Magnetomotive force  (v) Residual flux. 

(Nagpur University, Summer  2003) 
23. Compare electric and magnetic circuit by their similarities and dissimilarities. 

(Nagpur University, Winter 2003) 
24. Compare electric and magnetic circuits with respect to their similarities and dissimilarities. 

(Nagpur University, Summer 2004) 
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25. A steel wire of 25 cm mean diameter and circular cross section 3 cm in diameter has an airgap of   
1 mm wide. It is wound with a coil of 700 turns carrying a current of 2 A. 
Calculate : (i) m.m.f. (ii) Flux density (iii) Reluctance (iv) Relative permeability. 
Assume that iron path take 30% of total m.m.f. (Gujrat University,Summer 2003) 

26. What is a search coil in magnetic measurements? (Anna University, April 2002) 
27. Name the magnestic squares used to find iron loss. (Anna University, April 2002) 
28. What is a magnetic circuit? A magnetic circuit is made up of 3 limbs A, B and C in prallel. The 

reluctances of the magnetic paths of A, B and C in AT/mWb are 312, 632.6 and 520 respectively. 
An exciting coil of 680 turns is wound on limb B. Find the exciting current to produce of flux of 
lmwb in the  limb A. (V.T.U., Belgaum Karnataka University, February 2002) 

29. An iron ring of 300cm mean circumference with a cross section of 5cm2 is wound uniformly with 
350 turns of wire. Find the current required to produce a flux of 0.5 Mwb in iron. Take relative 
permeability  of  iron as 400. (V.T.U. Belgaum Karnataka University, July/August 2002) 

30. What is Biot-Savart law? Explain briefly. Find the magnetic field due to a small circular loop carrying 
current I at distances from loop that are large compared with its dimensions. 

(Agra  Univ.  1978 Supp.) 
31. Magnetic potential (Mumbai University, 2002) (RGPV, Bhopal 2001) 
32. Flux density (Pune University,2002) (RGPV,  Bhopal  2001) 
33. Susceptibility (Mumbai University, 2002) (RGPV, Bhopal 2001) 
34. Define mm f, flux, reluctance, absolute and relative permeabilities with reference to magnetic circuits. 

( U.P. Technical University 2003) (RGPV, Bhopal 2002) 
35. Discuss B-H curve of a ferro-magnetic material and explain the following. 

(i) Magnetic saturation (ii) Hysteresis (iii) Residual magnetism (iv) Coercive force 
(RGPV, Bhopal 2002) 

36. What is meant by leakage and fringing? Define leakage coefficient. 

 
37. Define the following terms (any five) : 

 
(RGPV, Bhopal 2002) 

(i) MMF (ii ) Reluctance (iii) Permeance (iv) Magnetisation curve (v) flux density 
(vi) Magnetizing force (vii) Susceptibility (viii) Relative permeability (ix) Magnetic potential 

(RGPV, Bhopal 2002) 
38. Distinguish between leakage and fringing of flux. ,  B(hRoGpaPlV2002) 
39. Explain fringing of magnetic flux, magnetic leakage, staturation of ferowegnetic materials, B-H 

Curve, hysteresis and eddy current losses. ,  B(RhGopPaVl   2003) 
 

  OBJECTIVE TESTS – 6  

1. Relative permeability of vacuum is 
(a)   4   107 H/m (b) 1 H/m 
(c)   1 (d) 1/4 

2. Unit of magnetic flux is 
(a) weber (b) ampere-turn 
(c)   tesla (d) coulomb 

3. Point out the WRONG statement. 
The magnetising force at the centre of a 
circular coil varies. 
(a) directly as the number of its turns 
(b) directly as the current 

(c) directly as its radius 
(d) inversely as its radius 

4. A pole of driving point admittance function 

implies 
(a) zero current for a finite value of driving 

voltage 
(b) zero voltage for a finite value of driving 

current 
(c) an open circuit condition 
(d) None of (a), (b) and (c) mentioned in 

the question (ESE 2001) 
 

ANSWERS 

1. c 2. a 3. a 

 


