T-T-T Diagram & Basics of Heat Treatment

Objective of this Lecture

- The trainee should be able to understand:
 - Relevance of T-T-T Diagram in metallurgy.
 - Heat Treatment & its purpose.
 - Some Basic Heat Treatment Processes.

Introduction

- Fe-C diagram shows the ideal phases when:
 - The system is held at a temp. for sufficiently long time.
 - All diffusions are complete to ideal lattice position.
- Not the practical situation, where steel is heated or cooled at a definite rate.
- So, all the changes are either not started or not completed.
- The practical situation is studied at TTT Diagram.

Introduction

- Both temperature & time i.e. rate of cooling is taken in consideration
- TTT Time Temperature Transformation
- A plot of temperature versus log of time
- Steel alloy of definite composition.
- Determines when transformations begin and end for an isothermal (constant temp.) phase transformation of a previously austenitized alloy.

Note: T-T-T curves are accurate only for phase transformations in which temperature of the alloy is held constant through out the duration of the reaction. This means these reactions are isothermal

Iron Carbon Diagram

2/26/2019

Log time

Transformations involving austenite for Fe-C system

TTT Diagram

- Area on the Left is austenite region.
- Austenite stable above LCT but unstable below LCT
- Left curve start of transformation
- Right curve finish of transformation

TTT Diagram

 Area between the two curves indicates the transformation of austenite to different types of crystal structures (Pearlite, Martensite, Bainite)

TTT Diagram

- In slow cooling as annealing process, the end product is 100% Pearlite.
- If the cooling curve passes through the middle of the transformation area, the end product is 50% Pearlite and 50% Martensite

Pearlite & Bainite

• Both are decomposition product of **u** iron

Coarse Pearlite \rightarrow Fine Pearlite (Troostite) \rightarrow Upper Bainite \rightarrow Lower Bainite etc.

- At temp below 550°C, movement of iron atom practically stops.
- Bainite forms around 400–550 °C in sheaves of ferrite plates (*sub-units*) separated by retained austenite, martensite or cementite.
- Bainite is an intermediate of pearlite and martensite in terms of hardness and kinetics of diffusion.

Nose of TTT

- As seen in diagram, at a particular level of under cooling the transformation takes least time to start and finish (around 550^{0} C).
 - Above that, the urge is less (temperature difference)
 - Below that, ability (diffusion kinetics/time) reduces!
 - That point is known as 'Nose of TTT'
- During quenching, the cooling rate must be fast enough to avoid the nose.

Quenching

- If cooling rate is very high, all Austenite will transform to Martensite
- Higher cooling rate (Rate A)
 - Higher distortion
 - Higher stresses than cooling rate B.
- The end product of both cooling rates is martensite.
- Cooling rate B is also known as the Critical Cooling Rate

Austempering

- Quenching process checked by immersing in a molten salt bath and soaking
- Curve passes through Bainite region of TTT diagram
- End product is Bainite
 - Not as hard as Martensite
 - More dimensional stability
 - Less distortion
 - Less internal stress

Effect of Alloying Elements

- All alloying elements(except Co) increases the stability of super-cooled austenite and retard both pro-eutectoid and the pearlitic reaction and then shift TTT curves of start to finish to right or higher timing.
- This is due to quenching possible at much slower cooling rate
- i) low rate of diffusion of alloying elements in austenite as they are substitution elements,
- ii) reduced rate of diffusion of carbon as carbide forming elements strongly hold them.
- iii) Alloyed solute reduce the rate of allotropic change, i.e. $\gamma \rightarrow \alpha$, by solute drag effect on $\gamma \rightarrow \alpha$ interface boundary.
- Additionally those elements (Ni, Mn, Ru, Rh, Pd, Os, Ir, Pt, Cu, Zn, Au) that expand or stabilize austenite, depress the position of TTT curves to lower temperature.
- In contrast elements (Be ,P, Ti,V,Mo,Cr,B,Ta,Nb,Zr) that favor the ferrite phase can raise the eutectoid temperature and TTT curves move upward to higher temperature.
- However Al, Co, and Si increase rate of nucleation and growth of both ferrite or pearlite and therefore shift TTT diagram to left.

Martensite

- Supersaturated solution of carbon trapped in a FCC lattice forming distorted body centered tetragonal structure (BCT).
- Hardening in martensite is not due to microstructure but due to blockage to the movement of dislocation.
- Highly stressed condition.
- Too brittle for any practical purpose.
- Quenching is always followed by tempering to
 - Reduce the brittleness.
 - Relieve the internal stresses caused by hardening.

Figure 4. Representation of an Interstitial Solution

18

Heat Treatment

Introduction

- Heat Treatment is the process of controlled heating and cooling of metals
 - To alter their mechanical properties
 - Without changing the product shape
- Heat Treatment sometimes takes place inadvertently due to manufacturing processes such as welding or forming
- Sometimes HT becomes integral part of manufacturing as in TMT (Thermo Mechanical Treatment)

Introduction

Definition - Metal Hand Book (ASM)

• A combination of heating & cooling operation timed & applied to a metal or alloy in solid state in a way that will produce desired properties

Objectives of Heat Treatment

- Increasing the service worthiness of material
 - Hardening.
 - Softening.
 - Property modification

• Obtain certain manufacturing objectives like

- Improve machinability & formability
- Restore ductility
- Recover Grain Size etc.
- Then known as Process Heat Treatment

Objectives of Heat Treatment

- Softening:
 - reduce strength or hardness,
 - remove residual stresses,
 - improve toughness,
 - restore ductility,
 - refine grain size or change the electromagnetic properties of the steel.
 - Annealing —
 - Full Annealing
 - Process,
 - spheroidizing,
 - normalizing and tempering austempering, martempering are the principal ways by which steel is softened.

Objectives of Heat Treatment

• Hardening:

- the strength and wear properties.
- *sufficient carbon and alloy content* is required.
- Material Modification:
 - modify the behavior of the steels in a beneficial manner to maximize service life, e.g., stress relieving , or strength properties, e.g., cryogenic treatment, or some other desirable properties, e.g., spring aging.

Some common terminologies

- Upper critical temperature (point) A_3 is the temperature, below which ferrite starts to form as a result of ejection from austenite in the hypoeutectoid alloys.
- Upper critical temperature (point) A_{CM} is the temperature, below which cementite starts to form as a result of ejection from austenite in the hypereutectoid alloys.
- Lower critical temperature (point) A_1 is the temperature of the austenite-to-pearlite eutectoid transformation. Below this temperature austenite does not exist.
- Magnetic transformation temperature A_2 is the temperature below which α -ferrite is ferromagnetic.

Characteristics of Heat Treatment

- Hardening HTs particularly suitable for Steels
 - Many phase transformation/ inter-metallic compound precipitation involved even in PCS or LAS.
 - Normal phase transformation or precipitation characteristics modified.
 - Not applicable to Steels having Single phase structure like Austenetic or Ferritic SS.
- Other type of heat treatments equally applicable to ferrous & non-ferrous alloys.

Hardening Heat Treatments

- Hardening (normally quenching followed by Tempering) is intended to improve the strength and wear properties of steel.
- Generally increases hardness at the cost of toughness
- Can be of two types
 - Through hardening \rightarrow about same hardness from surface to core
 - Surface hardening \rightarrow Sharp drop in hardness after few mm from surface

Requirement of Hardening HT

- Steel should have enough C and/or other alloys to
 - Shift TTT curve to right.
 - To avoid 'Nose' in practical quenching line.
- If both conditions are satisfied, both type of hardening is possible
- If not, only surface can be carburized and hardened.

Through Hardening HT

- Steps
 - Heating to γ →
 Soaking → Quenching
 to martensite →
 Tempered to tempered
 martensite

HEAT TREATMENT PROCESS

Through Hardening HT

- Heating to austenizing range i.e. $30 50^{\circ}$ C above Ac₃ (Hypoeutectoid) or Ac₁ (Hypereutectoid).
- Holding sufficiently long time for full transformation (1hr/per inch of maxm. thickness).
- Dipping in Quenching Medium.
- Raising temp in 300^oC -500^oC range.
- Holding for predetermined time.
- To obtain tempered martensite of required hardness & toughness as demanded in service.

Martensite Photo

Tempering

• Tempering means subsequent heating

- to a specific intermediate temperature.
- holding for specific time.
- Tempering leads to the partial decomposition of martensite into ferrite-cementite mixture.
- At low tempering temperature (up to 200^oC or 250^oC),
 - Hardness changes only to a small extent
 - True tensile strength increases
 - Bending strength increases

Tempering

- Exhaustive tempering temperature range 200^oC 600^oC
- Holding time varies from 30 min. to 2hrs.
- Temp & time depends on the hardness-toughness combination required in service.
 - Higher time/temp \rightarrow Reduced hardness & increased toughness.
- Carbon separates out from martensite lattice(retained austenite)as Cementite.
 - Reduction in stress & accicularity (becoming needle shaped).
 - Drop in hardness, increase in toughness
Tempering

- Higher tempering temperature reduces
 - Hardness
 - True tensile strength
 - Yield point
 - relative elongation.
- This is due to formation of ferrite and cementite mixture.

Tempering

- At still higher temperature or holding time
 - Spherodisation of cementite.
 - Coarsening of ferrite grains.
 - Fall in hardness as well as toughness.
 - In certain cases machinabilty improves.
- In high alloyed steel, retained austenite decomposes.

Temper Embrittleness

- A sharp fall in Impact strength when:
- Holding or slowly cooling alloy steels which were previously tempered between 400-660 degree celsius.
- Tempering as quenched alloy steels in the temperature range 250 400 degree celsius.
- All steels, in varying degree, suffer from this
 - Carbon steels display slight loss of toughness.
 - Observed specifically in steels with phosphorous, antimony, tin and arsenic
 - For alloy steel reduction by 50% to 60% (steels containing Cr,N
 - Plain carbon Steels with Mn less than 0.5% are not susceptible to temper embrittlement
- The reason associated with
 - Precipitation of alloy carbides
 - Decomposition of retained austenite.
- It can be eliminated by heating steel above the embrittlement range followed by rapid cooling.
- Mo, Ti, Zr, W can be added so as to suppress embrittlement.

Quenching Media

- Quenching media with increased degree of severity of quenching
 - Normal Cooling
 - Forced Air or draft cooling
 - Oil
 - Polymer
 - Water and
 - Brine

12/26/2019

Quenching Media

- Quenching medium depends on
 - Material composition
 - Weight of job
- Aim is to have a cooling rate just bye-passing the nose of TTT curve for
 - minimum stress
 - minimum warping/crack during quenching.
- Cooling rate varies from surface to core: slower cooling towards centre.

Severity of quench values of some typical quenching conditions

Before we proceed further we note that we have a variety of quenching media at our disposal, with varying degrees of cooling effect. The severity of quench is indicated by the 'H' factor (defined below), with an ideal quench having a H-value of ∞.

Severity of Quench as indicated by the heat transfer equivalent H

$$H = \frac{f}{K} \qquad [m^{-1}]$$

 $f \rightarrow$ heat transfer factor K \rightarrow Thermal conductivity

Variable	Η
No agitation	0.02
No agitation	0.2
Slight agitation	0.35
Good agitation	0.5
Vigorous agitation	0.7
No agitation	1.0
Vigorous agitation	1.5
No agitation	2.0
Vigorous agitation	5.0
	∞
	No agitationNo agitationSlight agitationGood agitationVigorous agitationNo agitationVigorous agitationNo agitationNo agitation

Note that apart from the nature of the quenching medium, the vigorousness of the shake determines the severity of the quench. When a hot solid is put into a liquid medium, gas bubbles form on the surface of the solid (interface with medium). As gas has a poor conductivity the quenching rate is reduced. Providing agitation (shaking the solid in the liquid) helps in bringing the liquid medium in direct contact with the solid; thus improving the heat transfer (and the cooling rate). The H value/index compares the relative ability

The H value/index compares the relative ability of various media (gases and liquids) to cool a hot solid. Ideal quench is a conceptual idea with a heat transfer factor of $\infty \implies H = \infty$).

Standard Quenching & Tempering

TIME

12/26/2019

Surface Hardening

- Objective is to harden the surface & subsurface selectively to obtain:
 - Hard and wear-resistant surface
 - Tough impact resistant core
 - The best of both worlds
- Case hardening can be done to all types of plain carbon steels and alloy steels

Surface Hardening

- Selectivity is achieved
 - a) For low carbon steels
 - By infusing carbon, boron or nitrogen in the steel by heating in appropriate medium
 - Being diffusion controlled process, infusion is selective to surface and subsurface
 - Thus making the area responsive to HT
 - b) For medium & High carbon or Alloy steel
 - By heating the surface selectively followed by quenching

Case Carburizing

- Heating of low carbon steel in carburizing medium like charcoal
- Carbon atoms diffuse in job surface
- Typical depth of carburization; 0.5 to 5mm
- Typical Temperature is about 950°C
- Quenching to achieve martensite on surface and sub-surface
- If needed, tempering to refine grain size and reduce stresses

Case Nitriding

- Heating of steel containing Al in nitrogen medium like Nitride salt, Ammonia etc.
- Typical temperature is about 530^oC
- Nitrogen atoms diffuse in job surface
- Forms AIN, a very hard & wear resistant compound on surface & sub-surface
- Typical use is to harden tubes with small wall thickness like rifle barrel etc.

Case Carbo-nitriding

- Heating of low carbon steel containing Al in cynide medium like cynide salt followed by Quenching
- Typical temperature is about 850°C
- Nitrogen & Carbon atoms diffuse in job
- Typical case depth 0.07mm to 0.5mm
- Forms very hard & wear resistant complex compounds, on surface & sub-surface
- If needed, tempering to refine grain size and reduce stresses

Induction and Flame Hardening

- Employed for medium & high carbon steel or alloy steels
- Local heating of the surface only either by flame or induction current
- Heating to austenizing range, $30 50^{\circ}$ C above Ac₃ (Hypoeutectoid) or Ac₁ (Hypereutectoid)
- Quenching in suitable quenching media
- If needed, tempering to refine grain size and reduce stresses

Softening Heat Treatment

- Softening Heat Treatment done to:
 - Reduce strength or hardness
 - Remove residual stresses
 - Restore ductility
 - Improve toughness
 - Refine grain size
- necessary when a large amount of cold working, such as cold-rolling or wire drawing been performed

Softening Heat Treatment

- Incomplete Annealing
 - Stress Relieving
 - Process Annealing
 - Spherodising
- Full Annealing
- Normalizing

Softening HT Temperatures

12/26/2019

Stress Relieving

- To reduce residual stresses in large castings, welded and cold-formed parts.
- Such parts tend to have stresses due to thermal cycling or work hardening.
- Parts are
 - heated to 600 650°C (1112 1202°F)
 - held for about 1 hour or more
 - then slowly cooled in still air.

Process Annealing

- Used to treat work-hardened parts made out of low-Carbon steels (< 0.25% Carbon).
- In process heat treatment
- Allows the parts to be soft enough to undergo further cold working without fracturing.

Process Annealing

- Temperature raised near the lower critical temperature line A₁ i. e.
 650°C to 700°C
- Holding for sufficient time, followed by still air cooling.
- Initially, the strained lattices reorient to reduce internal stresses (recovery)
- When held long enough, new crystals grow (recrystallisation).
- Used to treat work hardened parts made from Low carbon steels (<0.25% carbon)

Process Annealing

- Material stays in the same phase through out the process
 - Only change in size, shape and distribution of the grain structure
- This process is cheaper than either full annealing or normalizing
 - As material is not heated to a very high temperature or cooled in a furnace.

Spheroidization

- Used for high carbon steels (Carbon > 0.6%) that will be machined or cold formed subsequently.
- Cycle multiple times between temperatures above and below 727 degree celsius.
- Be done by one of the following ways:
- Heat just below the line A₁ (727 °C)
- Hold for a prolonged time
- Followed by fairly slow cooling

Spheroidization

- Temperatures slightly above and below the A₁ say 700 and 750°C
- Slow cool.

Or

- For tool and alloy steels
 - heat to 750 to 800°C
 - hold for several hours
 - followed by slow cooling.

Spheroidization

SPHEROIDITE

- Results formation of small globular cementite (spheroids)
- Dispersed throughout the ferrite matrix.
- Improved machinability
- Improved resistance to abrasion

Full Annealing

An act of

- Heating to austenizing range, 30 50°C above Ac₃ (Hypoeutectoid) or Ac₁ (Hypereutectoid)
- Holding sufficiently long time for full transformation (1hr/per inch of maxm. Thickness)
- Cooling slowly upto 500⁰C
- Normal cooling to room temperature

Full Annealing

- Cooling rate varies from 30°C/hr to 200°C/hr depending on composition
- Enable the austenite to decompose fully
- Higher the austenite stability, slower the cooling to ensure full decomposition.
- Thus, alloy steels, in which austenite is very stable should be cooled much slower than carbon steel.
- The microstructure is coarse Pearlite with ferrite or Cementite (depending on whether hypo or hyper eutectoid).

Full Annealing

- Full annealing hyper eutectoid steel is required only for restoring grain size
 - When hot working (rolling or forging) finished at high temperature resulting in coarse grained structure.
- For hot working finished at a normal temperature, incomplete annealing OK
- Hypoeutectoid hot worked steel (rolled stock, sheet, forgings, etc), castings of carbon & alloy steels, may undergo full annealing.

Normalizing

- Refine grain structure before hardening .
- To harden the steel slightly.
- Raising the temperature to 60°C (140 °F) above line A₃ (hypo) or line A_{CM} (hyper)fully into the Austenite range.
- Held at this temperature to fully convert the structure into Austenite
- Removed from the furnace
- Cooled at room temperature under natural convection.
- Results a grain structure of fine Pearlite with pro-eutectoid Ferrite or Cementite.
- Normalizing is normally carried out at a temperature 50 degree Celsius above annealing.

Normalizing Vs. Annealing

Normalising

- considerably cheaper
- No added cost of blocking the furnace. & at times, power
- Comparatively harder
- Non-uniform hardness
 - Machinability

Annealing

- Costlier in terms of fuel and furnace. time
- Cost of blocking the furnace.& at times, power
- Softest possible structure in that composition
- Uniform hardness in all section thickness
 - Uniform machinability

Thank you

12/26/2019