Trainsets

CT

DENCH

0

101

Silabhadra Das P(Trainset)/IRIMEE

What is a Trainset ?

2020 SERIES

21

31

.....

PPORI - TONERI LINER

.

A Trainset is basically a Distributed Power Rolling Stock(DPRS)

DPRS

- Stands for Distributed Power Rolling Stock
- Class of vehicles fit to move on Railway systems and one where the Propulsion systems and Powered wheels for providing tractive force are distributed over more than one and mostly large number of vehicles
- This is opposed to locomotive hauled trains where the equipment and powered wheels producing Tractive effort are contained in vehicle/ vehicles which are non-passenger carrying and are coupled to passenger cars through mechanical coupling

Concentrated Power train

Distributed Power train

TYPES ON THE BASIS OF POWER SOURCE

Internal Power Source - Diesel Electric and Hydraulic Multiple Unit with AC-DC or AC-AC Drive or Hydraulic Drive.

External Power source - EMU/ MEMU Train sets drawing power from AC OHE with DC Motors or AC Motors OR DC OHE or third rail with AC Motors.

Hybrid – Combination of Internal and external power source

DELHI METRO

(Constant)

♦The Indian EXPRESS

SHINKANSEN

- 100 % powered trainset
- All axles in a bullet train are propelled by a traction motor

CONCEPT OF TRACTION

 $TE_{max} = \mu \times W$

μ = Adhesion W = Weight on Drivers

Peak Power Curve

Coefficient of friction: typically on railways it is between 0.35 and 0.5, whilst under extreme conditions it can fall to as low as 0.05. Thus a 100-tonne locomotive could have a tractive effort of 350 kilonewtons, under the ideal conditions (assuming sufficient force can be produced by the engine), falling to a 50 kilonewtons under the worst conditions

Why is there an Adhesion Limit?

Factors Affecting Adhesion

Wheel/Rail Contact Factors

- Wheel-Rail materials
- Hertzian (Rolling Wheel) Stresses
- Rail Metal Creep (Longitudinal Movement)

Track factors

- Rail surface condition
- Rail profile irregularities
- Curvature of track

Vehicle factors

- Mechanical
 - Loco weight and axle weight distribution
 - Weight transfer
 - Speed
 - Wheel size variation
- Electrical
 - Torque control method
 - Traction motor characteristics
 - Power circuit configuration
 - Slip-slide control

The Law of Rail Traction

Speed Limit

- High centrifugal force at high RPM
- Insulation breakdown

- Valve open/close times
- Fuel Burn time
- Fatigue Limits

Why is there a Speed Limit?

Other Factors Limiting Maximum Speed

- Bearing Design
- Vibrations
- Mechanical Transmission System
- External Tracks and Structures

Tractive Effort of a Powered Rolling stock

Davis Equation: $R = A + Bv + CDv^2$

https://www.coalstonewcastle.com.au/physics/resistance/

А	В	C&D	
Journal / Roller Bearing Resistance	Flange friction	Head-end wind pressure	
Rolling resistance	Flange impact	Skin friction on the side of the train	
Track resistance	Rolling resistance wheel/rail	Rear drag	
	Wave action of the rail	Turbulence between cars	
		Yaw angle of wind tunnels	

Resistance to Movement of Rolling Stock

How the Resistance Behaves

Vehicle Design to Minimise Air Drag

Add up All Resistances

Actual Tractive Effort Available for Haulage

Why Distributed Power ?

 $6F_{\alpha} - (D+T_r) = m_{tr} a_x$ $6\alpha P_i - (D+T_r) = m_{tr} a_x$ $n\alpha P_i - (D+T_r) = m_{tr} a_x$ $\alpha n P_i - (D+T_r) = m_{tr} a_x$

More adhesive mass in case Of DPRS

n-number of powered axles α -adhesion coefficient P_i – Axle load F_{α} - adhesive mass

D – Rolling resistance, drag resistance etc T_r - Trailing load

From above equation it is clear that greater is the number of powered axles, Greater is the adhesive mass and hence better acceleration

Distributed Power/Concentrated Power

- The distributed traction system has many advantages
 - energy efficiency
 - light axle weight
 - high acceleration and deceleration due to large number of driving axles
 - more cabin space as there are no locomotives
 - and ability to utilize the energy of regenerative braking efficiently

Ref: Akiyama et al.

DPRS Types in Indian Railways

DMU

DMU(Diesel Multiple Unit) is a multiple-unit train powered by on-board diesel engines.

A DMU requires no separate locomotive, as the engines are incorporated into one or more of the carriages.

• DIESEL MECHANICAL MULTIPLE UNIT(DMMU)

rotating energy of the engine is transmitted via a gearbox and driveshaft directly to the wheels of the train

• DIESEL HYDRAULIC MULTIPLE UNIT(DHMU)

a hydraulic torque converter, a type of fluid coupling, acts as the transmission medium for the motive power of the diesel engine to turn the wheels.

• DIESEL ELECTRIC MULTIPLE UNIT(DEMU)

a diesel engine drives an electrical generator or an alternator which produces electrical energy. The generated current is then fed to electric traction motors on the axles

Diesel Electrical Multiple Unit (DEMU)

- Manufacturer : ICF
- Engine: Kirloskar Cummins, Caterpiller in 1600 HP DEMU
- Transmission: Electric AC- DC in 700 & 1400 HP DEMU,
- AC-AC in 1600 HP DEMU
- Bogie: BO-BO (All O4 wheels are powered parallelly)
- Mostly operates in non-electrified plain regions & low traffic density branch line services

EMU (Electrical Multiple Unit)

- Manufactured at ICF & BEML
- Self propelled electric vehicles
- Obtain power from overhead OHE 25KV single phase AC or 1500 V DC
- Basically consists of
- End basic unit- Motor coach + driving trailer coach + trailer coach
- Middle basic unit Motor coach + trailer coach + non driving trailer coach
- 3-4 units in train formation
- Generally used in sub-urban railway transport
- Designed for super dense crush load

End basic unit

Middle basic unit

MEMU (Mainline Electrical Multiple unit)

Manufactured in ICF & RCF

Employed for main line medium distance operations

Consists of a motor car and three trailer cars

Propulsion system, control circuit similar to EMU but dimensional differences are there

Maximum axle load of trailer coach 16.25 T – Not designed for super dense crush load

2 units in a train formation

EMU v/s MEMU

GENERAL DATA

	Description		EMU		MEMU		MU	Reference
S/	_		M/C	T/C	M/C	2	T/C	
no				-,-			-, -	
1	Type of Stock		AC BG EMU WAU4		AC	AC BG MEMU		
2	Coach Builder		ICF & BEML		ICF & RCF		RCF	
3	Manufacturer of Traction equipments including Tr. Motor Transformer etc.		BHEL & CGL		BHEL			
4	Unit formation		DMC+TC+TC		DMC+TC+TC+T C		TC+TC+T	
5	Train formation		3/4 units		2 units			
6	No. of Driving Cabs		2		2	2		
7	Type of Traction		25 KV AC		25 KV AC		AC	
8	Wheel arrangement		Bo-Bo	p-Bo Bo-Bo				
9	Brake system	Self lapping electro pneumatic brake system						
10	Axle Load capacity in Tonnes i) Conventional EMU/MEMU ii) HCC		20.32 20.32	13.0 20.32T	20.	32	13.0 	RDSO specification no. K3-B-01, Feb'03 & for EMU T/C- EMU- 2/A-9-0-501 and EMU-2/D-9-0-503.
11	Wheel Diameter (New)	mm.	952		952			
12	Wheel Diameter (Condemning)		877	857	877	7 857		RDSO manual no. CMI-K001 (Apr'2000)
	HCC		865	865				
13	Gear ratio		20:91		20:	91		
14	Train performance p rating Horse power	er unit	Cont. 896	1 hr. 1004				ACTM Volume-III, 1994
	Tractive effort (T)		4.8	5.8				
15	Traction motor rating: Type	4601AZ/E 4303AZ/C Cont. 1	BZ/BX/BY	4303BY (BHEL) Cont. 11	ar.	C10 (CG	005 TM EL)	ACTM Volume-III, 1994 & Manufacturer's maintenance manual.
	Volts (V) Current (A) Output (KW) RPM	535 5 340 3 167 1 1260 1	35 80 .87 .182	535 5 425 4 207 2 1170 1	35 65 27 120	56 41 21 11	3 563 5 455 0 228 70 1135	
16	KVA rating of transform	ner	1000					
17	Normal acceleration Kmph Level track, CLR set Amps.	to 40 at 500	1.6 Km/	/Hr./Sec				BHEL Maintenance Manual no. MM/AC- M/EMU/003, Jan'01
18	No. of pass./unit - Dens	Normal Crush e crush	400 774 1148					ACTM Volume-III, 1994

		EMU		MEMU			
10		MC TC		MC TC		For MEMU (M/C)-	
19	lare weight	59.3T	C-30.5T	61 T	33.15T	9-0-012	
			D-31.5T				
20	No. of Seats	98	112	68/81	80/108	(i) Drg. No. MEMU/TC ₂ -	
			(C type)			9-0-201, (3) MEMU (DMC- 0.0	
	Vendor Coach		88		No	(11) MEMO/DMC2-9-0- 201.	
			(D type)		Vendor	(iii) MEMU/TC-9-0-001,	
						(iv) EMU-2/A-9-0-501,	
0.1		2010		2006		(v) EMU-2/D-9-0-503	
21	Max. height above rail to	3810 mm		3886 mm		1) Drg. No. MEMU/DMC2-9-0-201	
	top of roof					ii)EMU/M-9-0-006	
22	Max. length of the body	20726 mm		215	21337	i) EMU/M-9-0-006	
	<u> </u>				mm	ii)EMU-2/A-9-0-501	
				mm		201	
						iv)MEMU/TC-9-0-001	
23	Max. width of the body	3658 mm		3245 mm		do	
24	Floor height from rail level	1197mm		1278mm		i) Drg. No.	
						MEMU/DMC ₂ -9-0-201,	
26	Height of coach (rail level to	1308mm		4255mm		i) Drg. No.	
20	nanto at home)	105011111		120011111		MEMU/DMC ₂ -9-0-201,	
	panto at nome,					ii) EMU/M-9-0-006.	
27	Min. height above rail level	210 ⁺⁵ -0 mm		210 ⁺⁵ -0 mm		i) Drg. No. DMU/	
	to the lowest fitting on	188 (for air spring				ii) Drg. No. EMU-2-6-	
	under frame under tare	coaches)				046.	
28	Length of 9 car rake	194.12m	1				
	Length of 8 car rake	172.638m.		177.616m.		As measured.	
	Length of 12 car rake	258m.					
29	Distance between front &						
	rear pantographs:						
	12 car rake	226.5 m	226.5 m (approx.)			-Do-	
	9 car rake	162 m (a	approx.)				
	8 car rake			1140 m	(approx.)		

Trainset – Semi High Speed T-18

- Train-18 is 16 car train with 4 basic unit i.e. Two number of end basic unit (DTC-MC-TC-MC) and two number of middle basic unit (NDTC-MC-TC-MC)
- Semi-high speed (160 kmph) multiple unit train-set.
- Train-18 is provided with **IGBT** based energy efficient 3 phase propulsion system and regenerative braking
- Stainless steel car body with continuous window glasses
- All propulsion equipments are shifted from onboard to under-slung. All power components such as line & traction converters, auxiliary converter, air compressor, battery box, battery charger, brake chopper resister are mounted under the frame
- Zero discharge vacuum-based bio-toilets
- Modern **bolster-less** design bogies with **fully suspended traction motors**,
- Train-18 has 50% powering i.e. Every alternate coach is powered
- Ethernet backbone

Trainset - High Speed

- Operational speed greater than 200 Kilometer per hour on existing track
- Operational speed greater than 250 Kilometer per hour on new track
- Significantly faster than traditional railway trains
- E.g.- Bullet Train (Japan)
 - ICE (Germany)
 - TGV (France)
 - CRH (China)

Rolling stock requirement

- Self propelled, fixed composition and bi-directional
- High level of technology
- Limited axle load (11 to 17 tons for 300 km/h)
- High traction power (approx. 11 to 24kW per ton)
- 3 Phase Propulsion System
- Power electronic equipment: GTO, IGBT based Control circuits
- Computer network. Automatic diagnostic system
- Optimised aerodynamic shape
- In-cab signalling system/s
- Several complementary braking systems
- High level of RAMS (Reliability, Availability, Maintainability and Safety)
- Airtight structure

Wheel

• Flatter tread, Wheel conicity should be 1:40, 1:60 or 1:80

SUSPENSION

Differential pressure valve

Aerodynamic drag of a typical train

AERODYNAMIC BODY DESIGN

Achieving High Speed

Aerodynamic Design

For high speeds, air drag is to be minimized. Aerodynamically designed Car body with long nose to reduce drag

When high speed train exits a tunnel, a blasting sound is generated due to micro pressure waves. To reduce this micro pressure, the front car is designed with a nose section.

Achieving High Speed

Reducing Air Drag

Fairings fitted all around the gaps between cars

Side and Bottom covers for Bogies and other underframe mounted equipment

Passenger Comfort

<u>Avoiding Ear Pressure in</u> <u>tunnels</u>

- The car body is pressurized to avoid discomfort to passengers due to drop in pressure inside the passenger cabin in tunnel.
- To achieve this complete car body is made air tight and a pressure inside the car is kept above the atmospheric pressure.

Passenger Comfort

Noise Mitigation

Bogie covers Sound-absorbing construction

Fairing (Smooth covers) between cars

Pantograph noise insulation panel

Passenger Comfort

Special Lurch Control System

Intelligent control system that detects car body swaying and then reduces lateral vibrations.

Full-active suspension system and electric actuator

(a) Non-articulated cars

(b) Articulated cars

Carbody Tilting

Advantages of Trainsets

- Better acceleration and deceleration
- Saving in run time
- Energy efficient
- Enhanced safety
- Reduced maintenance
- Improved reliability
- Reduction in pollution
- Improved passenger comfort
- Improved line capacity
- Designed to handle super dense crush load

Better acceleration and deceleration

Operational Characteristics	Loco Hauled 21 coach Rajdhani Train	Rajdhani run with EMU Train set		
Acceleration (Starting)	0.22 m/s ²	1.0 m/s ²		
Deceleration	0.20 m/s ²	1.0 m/s^2		
Time to achieve 130 kmph	279 seconds	50.3 seconds		
Distance required to travel to	6489 meters	1089.7 meters		
attain a speed of 130 kmph				
Additional time required for	216 seconds	41 seconds		
acceleration and deceleration				
for a halt with maximum				
speed of 130 kmph				

Saving in run time

Reduction in run time between New Delhi and Howrah with Train sets

Speed Restrictions	Time Loss in Acceleration and deceleration		Time saved by Train	No of speed restrictions	Total time Saving
kmph	By Loco hauled trains (Seconds)	By Train sets with acceleration and deceleration @ 1 m/s ² (Sec)	sets vis-a- vis Loco hauled train (Sec)		with train sets(in sec)
Halts	216	41	175	6	1050
10	198	36	162	6	972
20	20 180 30.		150	13	1950
30	30 162		138	31	4278
40 144		20	124	6	744
50	50 126 16		110	6	660
60	60 111 13		98	4	392
70	93	10	83	19	1577
80	75	7	68	4	272
90	57	5	52	4	208
100	39	3	36	17	612
110	27	2	25	5	125
120	9	1	8	14	112
Savings in ru	Total I	Time savings 216	minutes or 3 h	135 ours and 36 n	12952 ninutes

Energy efficiency

- Propulsion equipment is mounted on coach, hence requirement of locomotives and power car is eliminated.
- Weight of locomotives and power cars is 1/3rd of the total formation. Hence, removing them saves energy.
- The space of locomotives and power cars may be utilized to augment more coaches in DPRS leading to greater Passenger Km
- Aerodynamically much more stable and lesser air resistance

Enhanced safety

- Most DPRS have regenerative and Electro pneumatic braking features, Emergency braking distance is reduced
- Reduce jerks due to smoother acceleration and deceleration due distributed power and traction forces
- Anti-telescopic design

Reduced maintenance

- Reduced wear of track and wheels since power is distributed
- Regenerative & EP braking improves wheel life
- 3 phase IGBT VVVF propulsion
- AC asynchronous traction motor

Improved reliability

3 PHASE IGBT TECHNOLOGY IS HIGHLY RELIABLE DISTRIBUTED POWERING HAS A LOT OF IN BUILT REDUNDANCY, SINCE 50-60 % OF AXLES ARE POWERED.

•] L

MAN MACHINE INTERFACE GIVES APT FEEDBACK ABOUT ANY ISSUES IN THE PROPULSION SYSTEM. IN-BUILT FAULT DIAGNOSTICS.

Improved line capacity

Faster acceleration & deceleration leads in time required to clear a critical section

Higher carrying capacity of DPRS will reduce number of trains required for same throughput.

THANK YOU