TRANSITION \& Motor control

Sanjay K. Sinha, Chief Instructor(DSL),IRIMEE

OBJECTIVES

- Different combinations of TMs
- Load curve(s) of Main

Gen/Alternator
Limitations of speeds
Transition $\&$ its type
> Different Transitions
Transition Components -for checking during trouble shootings MAIN GEN./ALTERNATOR WITH FULL FIELD

TR. MOTORS COBINATIONS ACROSS THE MAIN GEN./ALTERNATOR WITH WEAK FIELD

LOAD CURVE OF mAIN GEN./ALTERNATOR SET BY EXCITA

SYCTFM

If speed of TMs increases
\rightarrow Back EMF increases
\rightarrow Equivalent Resistance increases
\rightarrow The operating pt.moves from 'B' to 'C'

If speed of TMs decreases
\rightarrow Back EMF decreases
\rightarrow Equivalent Resistance decreases
\rightarrow The operating pt.moves from 'C' to 'B'

LOAD CURVE AT EACH NOTCH (FROM $1^{\text {TH }}$ TO $8^{\text {TH }}$ NOTCH)SET BY

 EXCITATION SYSTEM

LIMITATIONS OF TMS SPEEDS

If the speed of TMs increases

- The voltage increases and reaches its limit (C)
- The corresponding speed is also limited
If the speed of TMs decrea The current increases ar reaches its limit(B)

- The corresponding speed is also limited

TRANSITION

- Implies change(s) of
i)TMs combinations
(SP to P or P to SP)
ii) TMs field excitation

> (FF to WF or WF to FF)
iii)Both of above
-Done for speed increase
or decrease when it reaches
the limit of maximum
Gen. voltage(C) or Current(B).

AUTOMATIC TRANSITION

- Transition is done automatically by control circuits
- The control circuit operates at corresponding speeds when the $M / G e n$ voltage or current reaches the limits (C or B) of the constant load curi M/Gen.

TRANSITION-TYPE

FORWARD TRANSITION

-Done for speed increase

BACKWARD TRANSITION

-Done for speed decrease

FORWARD TRANSITION

Done when -

Gen. Voltage reaches at its Maximum limit(C)

Done by -

Reducing the back emf of TMs' combination thereby reducing of the Main Gen. Voltage

BACKWARD TRANSITION

Done when -

тhe Gen. current reaches at its Maximum limit(B)

Done by -

 Increasing the back emf of TMs' combination thereby increasing …...! of the Main Gen. Voltage
Sequence of different Transition

Sequence of Transitions	Events (Changes in TMs circuitry)
FORWARD	TRANSITIONS
$1^{\text {st }}$ Transition	SPFF \rightarrow SPWF
$2^{\text {nd }}$ Transition	SPWF \rightarrow PFF
$3^{\text {rd }}$ Transition	PFF \rightarrow PWF
BACKWARD	TRANSITIONS
$1^{\text {st }}$ Transition	PWF \rightarrow PFF
$2^{\text {nd }}$ Transition	PFF \rightarrow SPWF
$3^{\text {rd }}$ Transition	SPWF \rightarrow SPFF

INITIAL ARRANGEMENT OF CIRCUITARY OF TMS
 : PWF \rightarrow PWF

- At stand still the TMS draw very high current(I)
- As TI al ${ }_{A} I_{F}$ i.e. $T a I^{2}$; a good initial torque (T) develops which causes rotation of TMs
- The rotation creates Back EMF (E_{F} a N. Φ) from the TMS.
- M/Gen. Voltage (V)also rises and reaches at ' B '.

$1^{\text {st }}$ TRANSITION :

SPFF \rightarrow SPWF

- As the speeds of TMs increase the Back EMFs of TMs will also increase
- The M/Gen. Voltage rises (Current reduces)when the operating pt. traverse from ' B ' to ' C '
- The operating pt. will not go beyond ' C ' because the voltage
 limitation already established by automatic excitation control system can not be exceeded.
- The speed of the loco will be stable at 29 KMPH corresponding to pt.'C'
- To increase speeds back emfs of TMs are decreased by SPFF to SPWF circuitry conversion such that
' P ' is brought at B ' . (1st Transition)

$2^{\text {ND }}$ TRANSITION :SPWF \rightarrow PFF

- As the speeds of TMs increase further the Back EMFs of TMs will also increase
- The M/Gen. Voltage rises (Current reduces)when the operating traverse from ' B ' to ' C '
- The speed of the loco will be stable at 47 KMPH corresponding t pt.'C'
- To increase speeds back emfs of TMs are decri PFF circuitry conversion such that

$3^{\text {rd }}$
 TRANSITION

 PFF \rightarrow PWF- As the speeds of TMs increase further the Back EMFs of TMs will also increase

- The M/Gen. Voltage rises (Current reduces)when the operating pt. traverse from ' B ' to ' C '
- The speed of the loco will be stable at 81 KMPH corresponding to pt.' C '
- To increase speeds back emfs of TMs are decreased by PFF to PWF circuitry conversion such that ' P ' is brought at ' B '. ($3^{\text {nd }}$ Transition)

COMPONENTS OF TRANSITION

-Axle Generator

- Transition Excitation Transformer

Transition Regulating Panel

AXLE GENERATOR (ALTERNATOR)

- 40 poles imbedded in the plastic stator
- Rotor - shaft driven by Axle no. 2
- L-shaped \& straight soft iron bars in the rotor as flux guide to stator coil
- Output voltage induced in stator coil with the frequency proportional speed.

TRANSITION EXCITATION TRANSFORMER (TET)

- A saturable Transformer
- Located on the front panel
- Output is volt-time pulse
Speed proportional to no.
of to pulse
More speed, More pulses and more average voltage

TRANSITION REGULATING

 PANEL (TRP)- Located on the front panel
- Comprises a set of electronic circuit cards
- Card No.210-

Transition Cards
Card no.-207 Miscellaneous Card No. of card no. $210=$

No. of Transitions(1,2
or 3)

POWER CIRCUIT

CIRCUIT OPERATION

PROPUSION CONTROL

TROUBLE SHOOTING:

- Transition is not picking up-----
1.Axle Gen. Cable open.

2. Wiring of Transition Transformer open or not perfect.

- $1^{\text {st }}$ Transition is not picking up----
1.Card no. 210-1 is loose
2.FSR coil is not perfect
- $2^{\text {nd }}$ Transition is not picking up----
1.Card no. 210-2 is loose
2.TR coil is not perfect/ Emergency TR can be used manually. $3^{\text {rd }}$ Transition is not picking up----
1.Card no. 210-3 is loose

