# TRANSITION &Motor control

Sanjay K. Sinha, Chief Instructor(DSL), IRIMEE

#### **OBJECTIVES**

#### Different combinations of TMs

- Load curve(s) of Main Gen/Alternator
- Limitations of speeds
- Transition & its type
- Different Transitions
- Transition Components -for checking during trouble shootings

#### TR.MOTORS COBINATIONS ACROSS THE MAIN GEN./ALTERNATOR WITH FULL FIELD



TR. MOTORS COBINATIONS ACROSS THE MAIN GEN./ALTERNATOR WITH WEAK FIELD



#### LOAD CURVE OF MAIN GEN./ALTERNATOR SET BY EXCITATION SYSTEM



#### LOAD CURVE AT EACH NOTCH (FROM 1<sup>TH</sup> TO 8<sup>TH</sup> NOTCH)SET BY EXCITATION SYSTEM



## LIMITATIONS OF TMS SPEEDS

#### If the speed of TMs increases

- The voltage increases and reaches its limit (C)
- The corresponding speed is also limited

#### If the speed of TMs decrea

- The current increases ar reaches its limit(B)
- The corresponding speed is also limited



### TRANSITION

- Implies change(s) of
- i)TMs combinations
  - (SP to P or P to SP)
- ii) TMs field excitation
  - (FF to WF or WF to FF)
- iii)Both of above
- Done for speed increase or decrease when it reaches the limit of maximum
- Gen. voltage(C) or Current(B).



## AUTOMATIC TRANSITION

- Transition is done automatically by control circuits
- The control circuit operates at corresponding speeds when the M/Gen voltage or current reaches the limits (C or B) of the constant load curv M/Gen.



#### **TRANSITION-TYPE**

#### **FORWARD TRANSITION**

-Done for speed increase

#### **BACKWARD TRANSITION**

-Done for speed decrease

## FORWARD TRANSITION

#### Done when -

Gen. Voltage reaches at its Maximum limit(C)

Done by -

Reducing the back emf of TMs' combination thereby reducing

of the Main Gen. Voltage



### **BACKWARD TRANSITION**

#### Done when -

The Gen. Current reaches at its Maximum limit(B)

#### Done by -

Increasing the back emf of TMs' combination thereby increasing of the Main Gen. Voltage



#### Sequence of different Transition

| Sequence of Transitions    | Events<br>(Changes in TMs circuitry) |
|----------------------------|--------------------------------------|
|                            | TRANSITIONS                          |
| FORWARD                    |                                      |
| 1 <sup>st</sup> Transition | SPFF →SPWF                           |
| 2 <sup>nd</sup> Transition | $SPWF \to PFF$                       |
| 3 <sup>rd</sup> Transition | $PFF \rightarrow PWF$                |
|                            | TRANSITIONS                          |
| BACKWARD                   |                                      |
| 1 <sup>st</sup> Transition | PWF →PFF                             |
| 2 <sup>nd</sup> Transition | $PFF \rightarrow SPWF$               |
| 3 <sup>rd</sup> Transition | $SPWF \rightarrow SPFF$              |

#### INITIAL ARRANGEMENT OF **CIRCUITARY OF TMS** : PWF→PWF

- At stand still the TMS draw very high current(I)
- ► As TI  $\alpha$ I <sub>A</sub>I<sub>F</sub> i.e. T  $\alpha$  I<sup>2</sup>; a good initial torque (T) develops which causes rotation of TMs
- The rotation creates Back EMF ( $E_F \alpha N. \Phi$ ) from the TMS.
- M/Gen. Voltage (V)also rises and reaches at 'B'.



#### 1<sup>st</sup> TRANSITION : SPFF→SPWF

- As the speeds of TMs increase the Back EMFs of TMs will also increase
- The M/Gen. Voltage rises (Current reduces)when the operating pt. traverse from 'B' to 'C'
- The operating pt. will not go beyond 'C' because the voltage limitation already established by automatic excitation control system can not be exceeded.
- The speed of the loco will be stable at 29 KMPH corresponding to pt.'C'
- To increase speeds back emfs of TMs are decreased by SPFF to SPWF circuitry conversion such that
  'P' is brought at B' .(1<sup>st</sup> Transition)



## $2^{ND}$ TRANSITION :SPWF $\rightarrow$ PFF

- As the speeds of TMs increase further the Back EMFs of TMs will also increase
- The M/Gen. Voltage rises (Current reduces) when the operating pt. traverse from 'B' to 'C'
- The speed of the loco will be stable at 47 KMPH corresponding to pt.'C'



#### $3^{rd}$ TRANSITION PFF $\rightarrow$ PWF

- As the speeds of TMs increase further the Back EMFs of TMs will also increase
- The M/Gen. Voltage rises (Current reduces)when the operating pt. traverse from 'B' to 'C'
- The speed of the loco will be stable at 81 KMPH corresponding to pt.'C'
- To increase speeds back emfs of TMs are decreased by PFF to PWF circuitry conversion such that 'P' is brought at 'B' .(3<sup>nd</sup> Transition)



тмз

TM5

TM1

#### TRANSITION(SUMMARY)

| Transition               | Event<br>(Normal<br>Combination-<br>→SPFF) | Speed<br>( KM/H) | RPM of<br>wheel | Axie<br>gen.<br>Voltag<br>e (V) |
|--------------------------|--------------------------------------------|------------------|-----------------|---------------------------------|
| 1 <sup>st</sup> forward  | SPFF→SPWF                                  | 29               | 47              | 07                              |
| 2 <sup>nd</sup> forward  | SPWF→PWF →PFF                              | 47               | 78              | 11                              |
| 3 <sup>rd</sup> forward  | PFF→PWF                                    | 81               | 133             | 20                              |
| 3rd backward             | PWF→PFF                                    | 79               | 131             | 19                              |
| 2 <sup>nd</sup> backward | PFF→PWF →SPWF                              | 45               | 76              | 10                              |
| 1 <sup>st</sup> backward | SPWF→SPFF                                  | 27               | 45              | 06                              |

COMPONENTS OF TRANSITION

Axle Generator

Transition Excitation Transformer

Transition Regulating Panel

## AXLE GENERATOR (ALTERNATOR)

- 40 poles imbedded in the plastic stator
- Rotor shaft driven by Axle no.2
- L-shaped & straight soft iron bars in the rotor as flux guide to stator coil
- Output voltage induced in stator coil with the frequency proportional speed.



## TRANSITION EXCITATION TRANSFORMER (TET)

- A saturable Transformer
- Located on the front panel
- Output is volt-time pulse
- Speed proportional to no.
  - of to pulse
  - More speed, More pulses
  - and more average voltage



## TRANSITION REGULATING PANEL (TRP)

- Located on the front panel
- Comprises a set of electronic circuit cards
- Card No.210-

Transition Cards

Card no.-207 Miscellaneous Card
 No. of card no.210 =
 No. of Transitions(1,2
 or 3)





**POWER CIRCUIT** 

## **CIRCUIT OPERATION**





PROPUSION CONTROL

## TROUBLE SHOOTING:

- Transition is not picking up-----
- 1.Axle Gen. Cable open.
- 2. Wiring of Transition Transformer open or not perfect.
- 1<sup>st</sup> Transition is not picking up----
- 1.Card no. 210-1 is loose
- 2.FSR coil is not perfect
- 2<sup>nd</sup> Transition is not picking up----
- 1.Card no. 210-2 is loose
- 2.TR coil is not perfect/ Emergency TR can be used manually.
- 3<sup>rd</sup> Transition is not picking up----
  - 1.Card no. 210-3 is loose

the solution